Yazar "Ozdil, Naime Filiz" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Estimation of hourly global solar radiation using artificial neural network in Adana province, Turkey(Yildiz Technical Univ, 2021) Goncu, Onur; Koroglu, Tahsin; Ozdil, Naime FilizSince global solar radiation (GSR) is an important parameter for the design, installation, and operation of solar energy-based systems, it is important to have precise information about it. As the indicating devices are expensive and their requirements such as operation and maintenance should be carried out, the measurement of solar radiation cannot be frequently taken. On the other hand, the measurements of different meteorological parameters such as relative humidity and ground surface temperature are more prevalent in meteorology stations. Therefore, the estimation of solar radiation is a significant parameter for the areas where the measurements could not be performed and to complete the missing information in databases. Many different models, software, and simulation programs are utilized to calculate solar radiation data, provide an economic advantage, and obtain high accuracy. The main purpose of this study is to perform an estimation of solar radiation in Adana, where is on the east of the Mediterranean in Turkey, by using an artificial neural network (ANN) model. The best estimation performance is obtained by optimizing the neuron numbers used in the network's hidden layer with the trial and error method. With this aim, hourly data including wind speed, wind direction, humidity, actual pressure, and average temperature are taken as inputs while solar radiation is taken as a target. All these data, which is for 2018, has taken from the Turkish State Meteorological Service. A linear correlation coefficient value has been obtained to be about 0.87313 with the mean square error (MSE) of 5.8262x10(7) W/m(2) for the testing data set. The ANN's testing/validation results show that it has a low MSE, indicating the accuracy and adequacy of the network model. Besides, the predicted ANN output is evaluated to be remarkably close to the measured target data by considering the linear correlation coefficient.Öğe Unknown uncertainties in the COVID-19 pandemic: Multi-dimensional identification and mathematical modelling for the analysis and estimation of the casualties(Academic Press Inc Elsevier Science, 2021) Tutsoy, Önder; Balikci, Kemal; Ozdil, Naime FilizInsights about the dominant dynamics, coupled structures and the unknown uncertainties of the pandemic diseases play an important role in determining the future characteristics of the pandemic diseases. To enhance the prediction capabilities of the models, properties of the unknown uncertainties in the pandemic disease, which can be utterly random, or function of the system dynamics, or it can be correlated with an unknown function, should be determined. The known structures and amount of the uncertainties can also help the state authorities to improve the policies based on the recognized source of the uncertainties. For instance, the uncertainties correlated with an unknown function imply existence of an undetected factor in the casualties. In this paper, we extend the SpID-N (Suspicious-Infected-Death with non-pharmacological policies) model as in the form of MIMO (Multi-Input-Multi-Output) structure by adding the multi-dimensional unknown uncertainties. The results confirm that the infected and death sub-models mostly have random uncertainties (due undetected casualties) whereas the suspicious sub model has uncertainties correlated with the internal dynamics (governmental policy of increasing the number of the daily tests) for Turkey. However, since the developed MIMO model parameters are learned from the data (daily reported casualties), it can be easily adapted for other countries. Obtained model with the corresponding uncertainties predicts a distinctive second peak where the number of deaths, infected and suspicious casualties disappear in 240, 290, and more than 300 days, respectively, for Turkey. (C) 2021 Elsevier Inc. All rights reserved.