Yazar "Ornek, Murat" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Field Test of Circular Footings on Reinforced Granular Fill Layer Overlying a Clay Bed(Amer Soc Testing Materials, 2012) Laman, Mustafa; Yildiz, Abdulazim; Ornek, Murat; Demir, AhmetThe ultimate bearing capacity and settlement of a circular shallow rigid plate on compacted granular fill layer with and without geogrid reinforcement overlying on natural clay deposit exhibiting low bearing capacity and large settlement have been investigated. A total of 15 field tests were carried out using a circular model rigid plate with a diameter of 0.90 m. This study has been initially directed to evaluate the beneficial effects of the compacted granular fill layer on natural clay deposit for the shallow rigid plate performance. Then, the reinforcing effect of the top granular fill layer with horizontal layers of welded geogrid reinforcement on the bearing capacity and settlement has been studied. Parameters of the testing program include granular fill thickness, depth of first reinforcement, vertical spacing of reinforcement layers, and number of reinforcement layers. Bearing capacity ratio (BCR) and percentage reduction in settlement (PRS) were defined to evaluate improvement performance. Based on the test results, the effect of the granular fill and welded geogrid reinforcement on the bearing capacity and settlement are discussed. The results indicate that the use of granular fill layers over natural clay soils has considerable effects on the bearing capacity and settlement characteristics. The construction of granular fill layer with welded geogrid reinforcement over clay deposit helps in redistributing the applied load to a wider area. It has been observed that the use of welded geogrid reinforcement in granular fill layer provides additional improvement of bearing capacity and provides reduction in settlement of the rigid plate up to 80 and 60 %, respectively.Öğe Field test of circular footings on reinforced granular fill layer overlying a clay bed(2012) Laman, Mustafa; Yildiz, Abdulazim; Ornek, Murat; Demir, AhmetThe ultimate bearing capacity and settlement of a circular shallow rigid plate on compacted granular fill layer with and without geogrid reinforcement overlying on natural clay deposit exhibiting low bearing capacity and large settlement have been investigated. A total of 15 field tests were carried out using a circular model rigid plate with a diameter of 0.90 m. This study has been initially directed to evaluate the beneficial effects of the compacted granular fill layer on natural clay deposit for the shallow rigid plate performance. Then, the reinforcing effect of the top granular fill layer with horizontal layers of welded geogrid reinforcement on the bearing capacity and settlement has been studied. Parameters of the testing program include granular fill thickness, depth of first reinforcement, vertical spacing of reinforcement layers, and number of reinforcement layers. Bearing capacity ratio (BCR) and percentage reduction in settlement (PRS) were defined to evaluate improvement performance. Based on the test results, the effect of the granular fill and welded geogrid reinforcement on the bearing capacity and settlement are discussed. The results indicate that the use of granular fill layers over natural clay soils has considerable effects on the bearing capacity and settlement characteristics. The construction of granular fill layer with welded geogrid reinforcement over clay deposit helps in redistributing the applied load to a wider area. It has been observed that the use of welded geogrid reinforcement in granular fill layer provides additional improvement of bearing capacity and provides reduction in settlement of the rigid plate up to 80 and 60 %, respectively. Copyright © 1996-2012 ASTM.Öğe Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil(Japanese Geotechnical Soc, 2012) Ornek, Murat; Laman, Mustafa; Demir, Ahmet; Yildiz, AbdulazimThe shortage of available and suitable construction sites in city centres has led to the increased use of problematic areas, where the bearing capacity of the underlying deposits is very low. The reinforcement of these problematic soils with granular fill layers is one of the soil improvement techniques that are widely used. Problematic soil behaviour can be improved by totally or partially replacing the inadequate soils with layers of compacted granular fill. The study presented herein describes the use of artificial neural networks (ANNs), and the multi-linear regression model (MLR) to predict the bearing capacity of circular shallow footings supported by layers of compacted granular fill over natural clay soil. The data used in running the network models have been obtained from an extensive series of field tests, including large-scale footing diameters. The field tests were performed using seven different footing diameters, up to 0.90 m, and three different granular fill layer thicknesses. The results indicate that the use of granular fill layers over natural clay soil has a considerable effect on the bearing capacity characteristics and that the ANN model serves as a simple and reliable tool for predicting the bearing capacity of circular footings in stabilized natural clay soil. (C) 2012. The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.