Yazar "Odabasi, Mehmet" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Cholesterol imprinted composite membranes for selective cholesterol recognition from intestinal mimicking solution(Elsevier Science Bv, 2018) Odabasi, Mehmet; Uzun, Lokman; Baydemir, Gozde; Aksoy, Nese Hayat; Acet, Orntir; Erdonmez, DemetMolecularly imprinted polymers which have been extensively investigated as selective adsorbents were constructed using a template molecule during the polymerization to gain template-specific cavities. In this study, we prepared cholesterol imprinted poly(2-hydroxyethyl methacrylate-methacryloyamidotryptophan) (PHEMA-MTrp) particles embedded composite membranes. These membranes were characterized through elemental analysis, FTIR, SEM, swelling tests, and surface area measurements. Adsorption experiments were performed in a batch experimental set-up, and the adsorption medium was either a methanol or intestinal-mimicking solution. Stigmasterol and estradiol were used as competing molecules in selectivity tests. Some results are as follows: the specific surface areas of MIP particle-embedded membranes, NIP particle-embedded membranes, and membranes without particles were 36.5, 29.2 and 13.7 m(2)/g, respectively. The imprinted membranes were 1.96 and 2.13 times more selective for cholesterol when compared to stigmasterol and estradiol used as competitor agents, respectively. Cholesterol adsorption capacity increased up to 23.43 mg/g with increasing cholesterol concentration of 2 mg/mL. The MIP particle-embedded composite membranes showed a negligible loss in cholesterol adsorption capacity after ten consecutive adsorption cycles using the same adsorbent. (C) 2017 Elsevier B.V. All rights reserved.Öğe Monolithic hydrophobic cryogel columns for protein separation(Springer, 2022) Erzengin, Mahmut; Baydemir Pesint, Gozde; Zenger, Okan; Odabasi, MehmetThe present study was conducted for the synthesis of a novel supermacroporous monolithic hydrophobic adsorbent for lysozyme (Lyz) selected as a model protein from aqueous solution. After preparation of poly(2-hydroxyethyl methacrylate-co-N-methacryloyl-(l)-tyrosine methyl ester) monolithic cryogel column, 1-naphthylamine was covalently attached, and the prepared column was abbreviated as NA-Mcc. Scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer, Emmett and Teller device were utilized for the morphology, functional groups and surface area measurements of the column. Effects of several parameters including Lyz content of the adsorption solution, pH of the medium used, ambient temperature, type of salt and flow rate on the adsorption capacity of the polymeric material were examined in continuous operation. The maximum value achieved for Lyz adsorption from aqueous phase was found to be 105.8 mg/g in phosphate buffer. In addition, NA-Mcc was investigated in terms of reusability, and it was demonstrated that there is no significant change in the adsorption properties of prepared monolithic hydrophobic cryogels after 30 adsorption-desorption cycles.