Yazar "Mollah, Md. Nurul Haque" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Disclosing Potential Key Genes, Therapeutic Targets and Agents for Non-Small Cell Lung Cancer: Evidence from Integrative Bioinformatics Analysis(MDPI, 2022) Mosharaf, Md. Parvez; Reza, Md. Selim; Gov, Esra; Mahumud, Rashidul Alam; Mollah, Md. Nurul HaqueNon-small-cell lung cancer (NSCLC) is considered as one of the malignant cancers that causes premature death. The present study aimed to identify a few potential novel genes highlighting their functions, pathways, and regulators for diagnosis, prognosis, and therapies of NSCLC by using the integrated bioinformatics approaches. At first, we picked out 1943 DEGs between NSCLC and control samples by using the statistical LIMMA approach. Then we selected 11 DEGs (CDK1, EGFR, FYN, UBC, MYC, CCNB1, FOS, RHOB, CDC6, CDC20, and CHEK1) as the hub-DEGs (potential key genes) by the protein–protein interaction network analysis of DEGs. The DEGs and hub-DEGs regulatory network analysis commonly revealed four transcription factors (FOXC1, GATA2, YY1, and NFIC) and five miRNAs (miR-335-5p, miR-26b-5p, miR-92a-3p, miR-155-5p, and miR-16-5p) as the key transcriptional and post-transcriptional regulators of DEGs as well as hub-DEGs. We also disclosed the pathogenetic processes of NSCLC by investigating the biological processes, molecular function, cellular components, and KEGG pathways of DEGs. The multivariate survival probability curves based on the expression of hub-DEGs in the SurvExpress web-tool and database showed the significant differences between the low-and high-risk groups, which indicates strong prognostic power of hub-DEGs. Then, we explored top-ranked 5-hub-DEGs-guided repurposable drugs based on the Connectivity Map (CMap) database. Out of the selected drugs, we validated six FDA-approved launched drugs (Dinaciclib, Afatinib, Icotinib, Bosutinib, Dasatinib, and TWS-119) by molecular docking interaction analysis with the respective target proteins for the treatment against NSCLC. The detected therapeutic targets and repurposable drugs require further attention by experimental studies to establish them as potential biomarkers for precision medicine in NSCLC treatment. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Öğe Network-based approach to identify molecular signatures and therapeutic agents in Alzheimer's disease(Elsevier Sci Ltd, 2019) Rahman, Md. Rezanur; Islam, Tania; Turanli, Beste; Zaman, Toyfiquz; Faruquee, Hossain Md.; Rahman, Md. Mafizur; Mollah, Md. Nurul HaqueAlzheimer's disease (AD) is a dynamic degeneration of the brain with progressive dementia. Considering the uncertainties in its molecular mechanism, in the present study, we employed network-based integrative analyses, and aimed to explore the key molecules and their associations with small drugs to identify potential biomarkers and therapeutic agents for the AD. First of all, we studied a transcriptome dataset and identified 1521 differentially expressed genes (DEGs). Integration of transcriptome data with protein-protein and transcriptional regulatory interactions resulted with central (hub) proteins (UBA52, RAC1, CREBBP, AR, RPS11, SMAD3, RPS6, RPL12, RPL15, and UBC), regulatory transcription factors (FOXCl, GATA2, YY1, FOXL1, NFIC, E2F1, USF2, SRF, PPARG, and JUN) and microRNAs (mir-335-5p, mir-26b-5p, mir-93-5p, mir-124-3p, mir-17-5p, mir-16-5p, mir-20a-5p, mir-92a-3p, mir-106b-5p, and mir-192-5p) as key signaling and regulatory molecules associated with transcriptional changes for the AD. Considering these key molecules as potential therapeutic targets and Connectivity Map (CMap) architecture, candidate small molecular agents (such as STOCK1N-35696) were identified as novel potential therapeutics for the AD. This study presents molecular signatures at RNA and protein levels which might be useful in increasing discernment of the molecular mechanisms, and potential drug targets and therapeutics to design effective treatment strategies for the AD.