Yazar "Kori, Medi" seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A 19-Gene Signature of Serous Ovarian Cancer Identified by Machine Learning and Systems Biology: Prospects for Diagnostics and Personalized Medicine(Mary Ann Liebert, Inc, 2024) Kori, Medi; Demirtas, Talip Yasir; Comertpay, Betul; Arga, Kazim Yalcin; Sinha, Raghu; Gov, EsraOvarian cancer is a major cause of cancer deaths among women. Early diagnosis and precision/personalized medicine are essential to reduce mortality and morbidity of ovarian cancer, as with new molecular targets to accelerate drug discovery. We report here an integrated systems biology and machine learning (ML) approach based on the differential coexpression analysis to identify candidate systems biomarkers (i.e., gene modules) for serous ovarian cancer. Accordingly, four independent transcriptome datasets were statistically analyzed independently and common differentially expressed genes (DEGs) were identified. Using these DEGs, coexpressed gene pairs were unraveled. Subsequently, differential coexpression networks between the coexpressed gene pairs were reconstructed so as to identify the differentially coexpressed gene modules. Based on the established criteria, SOV-module was identified as being significant, consisting of 19 genes. Using independent datasets, the diagnostic capacity of the SOV-module was evaluated using principal component analysis (PCA) and ML techniques. PCA showed a sensitivity and specificity of 96.7% and 100%, respectively, and ML analysis showed an accuracy of up to 100% in distinguishing phenotypes in the present study sample. The prognostic capacity of the SOV-module was evaluated using survival and ML analyses. We found that the SOV-module's performance for prognostics was significant (p-value = 1.36 x 10-4) with an accuracy of 63% in discriminating between survival and death using ML techniques. In summary, the reported genomic systems biomarker candidate offers promise for personalized medicine in diagnosis and prognosis of serous ovarian cancer and warrants further experimental and translational clinical studies.Öğe Bioinformatics Prediction and Machine Learning on Gene Expression Data Identifies Novel Gene Candidates in Gastric Cancer(Mdpi, 2022) Kori, Medi; Gov, EsraGastric cancer (GC) is one of the five most common cancers in the world and unfortunately has a high mortality rate. To date, the pathogenesis and disease genes of GC are unclear, so the need for new diagnostic and prognostic strategies for GC is undeniable. Despite particular findings in this regard, a holistic approach encompassing molecular data from different biological levels for GC has been lacking. To translate Big Data into system-level biomarkers, in this study, we integrated three different GC gene expression data with three different biological networks for the first time and captured biologically significant (i.e., reporter) transcripts, hub proteins, transcription factors, and receptor molecules of GC. We analyzed the revealed biomolecules with independent RNA-seq data for their diagnostic and prognostic capabilities. While this holistic approach uncovered biomolecules already associated with GC, it also revealed novel system biomarker candidates for GC. Classification performances of novel candidate biomarkers with machine learning approaches were investigated. With this study, AES, CEBPZ, GRK6, HPGDS, SKIL, and SP3 were identified for the first time as diagnostic and/or prognostic biomarker candidates for GC. Consequently, we have provided valuable data for further experimental and clinical efforts that may be useful for the diagnosis and/or prognosis of GC.Öğe Biomarkers From Discovery to Clinical Application: In Silico Pre-Clinical Validation Approach in the Face of Lung Cancer(Sage Publications Ltd, 2024) Kori, Medi; Gov, Esra; Arga, Kazim Yalcin; Sinha, RaghuBackground: Clinical biomarkers, allow better classification of patients according to their disease risk, prognosis, and/or response to treatment. Although affordable omics-based approaches have paved the way for quicker identification of putative biomarkers, validation of biomarkers is necessary for translation of discoveries into clinical application.Objective: Accordingly, in this study, we emphasize the potential of in silico approaches and have proposed and applied 3 novel sequential in silico pre-clinical validation steps to better identify the biomarkers that are truly desirable for clinical investment.Design: As protein biomarkers are becoming increasingly important in the clinic alongside other molecular biomarkers and lung cancer is the most common cause of cancer-related deaths, we used protein biomarkers for lung cancer as an illustrative example to apply our in silico pre-clinical validation approach.Methods: We collected the reported protein biomarkers for 3 cases (lung adenocarcinoma-LUAD, squamous cell carcinoma-LUSC, and unspecified lung cancer) and evaluated whether the protein biomarkers have cancer altering properties (i.e., act as tumor suppressors or oncoproteins and represent cancer hallmarks), are expressed in body fluids, and can be targeted by FDA-approved drugs.Results: We collected 3008 protein biomarkers for lung cancer, 1189 for LUAD, and 182 for LUSC. Of these protein biomarkers for lung cancer, LUAD, and LUSC, only 28, 25, and 6 protein biomarkers passed the 3 in silico pre-clinical validation steps examined, and of these, only 5 and 2 biomarkers were specific for lung cancer and LUAD, respectively.Conclusion: In this study, we applied our in silico pre-clinical validation approach the protein biomarkers for lung cancer cases. However, this approach can be applied and adapted to all cancer biomarkers. We believe that this approach will greatly facilitate the transition of cancer biomarkers into the clinical phase and offers great potential for future biomarker research. Biomarkers, which are routinely used in clinics, allow better classification of patients according to their disease risk, prognosis, and/or response to treatment. Although affordable omics-based approaches have paved the way for quicker identification of putative biomarkers, validation of biomarkers is necessary for translation of discoveries into clinical application. This research article highlights the challenges of translating cancer biomarkers into clinical practice and summarizes feasible step toward in silico pre-clinical validation using the example of lung cancer types. Accordingly, protein biomarkers proposed for lung cancer are being investigated using the in silico pre-clinical validation approach to determine whether they have cancer altering properties (i.e., oncoprotein, tumor suppressor, and cancer hallmark), are expressed in body fluids (i.e., plasma/serum, saliva, urine, and bronchoalveolar lavage) and can be targeted with FDA-approved drugs. We believe that the step of in silico pre-clinical validation is the future of biomarker research for all professionals involved in clinical, biological, epidemiological, biostatistical and health research, and that it will greatly facilitate the transition of biomarkers to the clinical phase.Öğe Multiomics Analysis of Tumor Microenvironment Reveals Gata2 and miRNA-124-3p as Potential Novel Biomarkers in Ovarian Cancer(Mary Ann Liebert, Inc, 2017) Gov, Esra; Kori, Medi; Arga, Kazim YalcinOvarian cancer is a common and, yet, one of the most deadly human cancers due to its insidious onset and the current lack of robust early diagnostic tests. Tumors are complex tissues comprised of not only malignant cells but also genetically stable stromal cells. Understanding the molecular mechanisms behind epithelial-stromal crosstalk in ovarian cancer is a great challenge in particular. In the present study, we performed comparative analyses of transcriptome data from laser microdissected epithelial, stromal, and ovarian tumor tissues, and identified common and tissue-specific reporter biomoleculesgenes, receptors, membrane proteins, transcription factors (TFs), microRNAs (miRNAs), and metabolitesby integration of transcriptome data with genome-scale biomolecular networks. Tissue-specific response maps included common differentially expressed genes (DEGs) and reporter biomolecules were reconstructed and topological analyses were performed. We found that CDK2, EP300, and SRC as receptor-related functions or membrane proteins; Ets1, Ar, Gata2, and Foxp3 as TFs; and miR-16-5p and miR-124-3p as putative biomarkers and warrant further validation research. In addition, we report in this study that Gata2 and miR-124-3p are potential novel reporter biomolecules for ovarian cancer. The study of tissue-specific reporter biomolecules in epithelial cells, stroma, and tumor tissues as exemplified in the present study offers promise in biomarker discovery and diagnostics innovation for common complex human diseases such as ovarian cancer.Öğe Network medicine approaches for identification of novel prognostic systems biomarkers and drug candidates for papillary thyroid carcinoma(Wiley, 2023) Kori, Medi; Temiz, Kubra; Gov, EsraPapillary thyroid carcinoma (PTC) is one of the most common endocrine carcinomas worldwide and the aetiology of this cancer is still not well understood. Therefore, it remains important to understand the disease mechanism and find prognostic biomarkers and/or drug candidates for PTC. Compared with approaches based on single-gene assessment, network medicine analysis offers great promise to address this need. Accordingly, in the present study, we performed differential co-expressed network analysis using five transcriptome datasets in patients with PTC and healthy controls. Following meta-analysis of the transcriptome datasets, we uncovered common differentially expressed genes (DEGs) for PTC and, using these genes as proxies, found a highly clustered differentially expressed co-expressed module: a 'PTC-module'. Using independent data, we demonstrated the high prognostic capacity of the PTC-module and designated this module as a prognostic systems biomarker. In addition, using the nodes of the PTC-module, we performed drug repurposing and text mining analyzes to identify novel drug candidates for the disease. We performed molecular docking simulations, and identified: 4-demethoxydaunorubicin hydrochloride, AS605240, BRD-A60245366, ER 27319 maleate, sinensetin, and TWS119 as novel drug candidates whose efficacy was also confirmed by in silico analyzes. Consequently, we have highlighted here the need for differential co-expression analysis to gain a systems-level understanding of a complex disease, and we provide candidate prognostic systems biomarker and novel drugs for PTC.Öğe Novel Genomic Biomarker Candidates for Cervical Cancer As Identified by Differential Co-Expression Network Analysis(Mary Ann Liebert, Inc, 2019) Kori, Medi; Gov, Esra; Arga, Kazim YalcinCervical cancer is the second most common malignancy and the third reason for mortality among women in developing countries. Although infection by the oncogenic human papilloma viruses is a major cause, genomic contributors are still largely unknown. Network analyses, compared with candidate gene studies, offer greater promise to map the interactions among genomic loci contributing to cervical cancer risk. We report here a differential co-expression network analysis in five gene expression datasets (GSE7803, GSE9750, GSE39001, GSE52903, and GSE63514, from the Gene Expression Omnibus) in patients with cervical cancer and healthy controls. Kaplan-Meier Survival and principle component analyses were employed to evaluate prognostic and diagnostic performances of biomarker candidates, respectively. As a result, seven distinct co-expressed gene modules were identified. Among these, five modules (with sizes of 9-45 genes) presented high prognostic and diagnostic capabilities with hazard ratios of 2.28-11.3, and diagnostic odds ratios of 85.2-548.8. Moreover, these modules were associated with several key biological processes such as cell cycle regulation, keratinization, neutrophil degranulation, and the phospholipase D signaling pathway. In addition, transcription factors ETS1 and GATA2 were noted as common regulatory elements. These genomic biomarker candidates identified by differential co-expression network analysis offer new prospects for translational cancer research, not to mention personalized medicine to forecast cervical cancer susceptibility and prognosis. Looking into the future, we also suggest that the search for a molecular basis of common complex diseases should be complemented by differential co-expression analyses to obtain a systems-level understanding of disease phenotype variability.Öğe RNA-based ovarian cancer research from 'a gene to systems biomedicine' perspective(Taylor & Francis Inc, 2017) Gov, Esra; Kori, Medi; Arga, Kazim YalcinOvarian cancer remains the leading cause of death from a gynecologic malignancy, and treatment of this disease is harder than any other type of female reproductive cancer. Improvements in the diagnosis and development of novel and effective treatment strategies for complex pathophysiologies, such as ovarian cancer, require a better understanding of disease emergence and mechanisms of progression through systems medicine approaches. RNA-level analyses generate new information that can help in understanding the mechanisms behind disease pathogenesis, to identify new biomarkers and therapeutic targets and in new drug discovery. Whole RNA sequencing and coding and non-coding RNA expression array datasets have shed light on the mechanisms underlying disease progression and have identified mRNAs, miRNAs, and lncRNAs involved in ovarian cancer progression. In addition, the results from these analyses indicate that various signalling pathways and biological processes are associated with ovarian cancer. Here, we present a comprehensive literature review on RNA-based ovarian cancer research and highlight the benefits of integrative approaches within the systems biomedicine concept for future ovarian cancer research. We invite the ovarian cancer and systems biomedicine research fields to join forces to achieve the interdisciplinary caliber and rigor required to find real-life solutions to common, devastating, and complex diseases such as ovarian cancer.Abbreviations: CAF: cancer-associated fibroblasts; COG: Cluster of Orthologous Groups; DEA: disease enrichment analysis; EOC: epithelial ovarian carcinoma; ESCC: oesophageal squamous cell carcinoma; GSI: gamma secretase inhibitor; GO: Gene Ontology; GSEA: gene set enrichment analyzes; HAS: Hungarian Academy of Sciences; lncRNAs: long non-coding RNAs; MAPK/ERK: mitogen-activated protein kinase/extracellular signal-regulated kinases; NGS: next-generation sequencing; ncRNAs: non-coding RNAs; OvC: ovarian cancer; PI3K/Akt/mTOR: phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin; RT-PCR: real-time polymerase chain reaction; SNP: single nucleotide polymorphism; TF: transcription factor; TGF-: transforming growth factor-