Yazar "Khenoussi, Nabyl" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A bi-layer electrospun polyurethane/silicone membrane scaffold: drug delivery and cytotoxicity studies(Indian Acad Sciences, 2023) Mohsenzadeh, Elham; Demir, Didem; Ceylan, Seda; Khenoussi, Nabyl; Schacher, Laurence; Adolphe, Dominique; Bolgen, NimetIn this study, a bi-layer scaffold combining polyurethane nanofibrous and silicone membrane layers was produced. Chemical, morphological and physical properties of the scaffolds were determined by Fourier-transform infrared spectroscopy, scanning electron microscope (SEM) and Brunauer-Emmett-Teller analyses, respectively. The surface properties were examined with the contact angle test. To evaluate the encapsulation and release behaviour of the scaffolds Rhodamine B and Nile red were used as model drugs. Further, the cytotoxicity and cell proliferation investigations were carried out using mouse embryonic fibroblasts cell lines. 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide assay and SEM were used to investigate the cell viability and cell-scaffold interactions, respectively. The results of the study were evaluated in order to develop a bimodal drug release system that has the potential to be used in tissue engineering applications.Öğe Tailoring the spatial filament organization within nanofibrous tissue engineering scaffolds(Taylor & Francis As, 2022) Shah Hosseini, Neda; Bolgen, Nimet; Khenoussi, Nabyl; Ceylan, Seda; Gokturk, Dilek; Schacher, Laurence; Adolphe, DominiqueFabricating scaffolds with biomimetic architectures is an important step toward engineering functional tissues. Electrospinning is a popular approach for creating nanofibrous substrates in which the filaments resembling the natural extracellular matrix (ECM) can provide topographical cues to cells directing their growth. One of the major challenges in electrospinning is tailoring the spatial organization of the filaments. To overcome this challenge, a hybrid static collector was utilized to form distinct filament organizations. The filament organization was characterized using image processing based on the Fourier Transforms Method. The effect of different filament orientation ratios on cellular growth is discussed.