Yazar "Kartal, Mesut" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Production and microwave electromagnetic shielding effectiveness of polyaniline-La2Ti2O7:Er,Yb composites(Korean Assoc Crystal Growth, Inc, 2021) Sahin, Ethem Ilhan; Canturk, Selim Burak; Emek, Mehriban; Genc, Seval; Kartal, MesutIn this research, La2Ti2O7 doped with erbium-ytterbium was produced by using solid state technique. A series of compounds with the chemical equation (La1-x-yREx-y)(2)Ti2O7 were doped with (Er3+, x = 0.025, 0.050) and (Yb3+ y = 0.02) rare earth ions prepared by conventional solid state reaction method at 1350 degrees C for 24 h. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were carried out for the structural analysis, which showed that second phase did not form in (La1-x-yREx-y)(2)Ti2O7. Additionally, the polyaniline- erbium, ytterbium doped La2Ti2O7 composites were fabricated via hot pressing using the compositions of (La0.955Yb0.02Er0.025)(2)Ti2O7, (La0.93Yb0.02Er0.05)(2)Ti2O7 and aniline. The weight ratios of erbium-ytterbium doped lanthanum titanate and aniline were 1:1 and 1:3 respectively, and epoxy resin was utilized to develop microwave shielding effectiveness composites. The microwave shielding effectiveness performances of polyaniline- La2Ti2O7: erbium-ytterbium composites were examined by shielding effect in 0-8 GHz using two-port vector network analyzer. A minimum of - 34.37 dB shielding effect performance was obtained in 6.27 GHz at the thickness of 2.0 mm. This shielding effect performance can be adjusted easily by managing the content of polyaniline in the composites for the needed frequency bands.Öğe Shielding effectiveness performance of polyaniline-NiFe2O4:Cu composites for sub-8 GHz applications(Springer, 2023) Sahin, Ethem Ilhan; Emek, Mehriban; Ibrahim, Jamal Eldin F. M.; Yumusak, Goerkem; Kartal, MesutHerein, NiFe2O4 doped Cu was synthesized using a mixed-oxide method to investigate its potential for creating composites with high microwave shielding effectiveness. The compound NiFe2-xCuxO4 was synthesized with x values of 0.1, 0.3 and 0.5, respectively. After sintering at 1250 degrees C for 4 h, single-phase Ni ferrite was formed. To analyze the phase composition and the structure of the synthesized compound, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were employed. The study's findings showed that NiFe2-xCuxO4 did not exhibit a second phase. To create composites with high microwave shielding effectiveness, polyaniline-NiFe2O4:Cu composites were fabricated using a hot-pressing technique, with compositions of NiFe1.9Cu0.1O3.95, NiFe1.7Cu0.3O3.85 and NiFe1.5Cu0.5O3.75 with the aniline, The weight ratios of Cu-added nickel ferrite and aniline were changed from 1:1 to 1:3, and epoxy resin was used. Using a two-port vector network analyzer, the polyaniline-NiFe2O4:Cu composites' microwave shielding effectiveness performance was examined in the range between 0 and 8 GHz. The study found that the shielding effect of the composites could be easily modified by changing the amount of polyaniline present in the specimens for the appropriate frequency bands. At 6.82 GHz, using a sample with a thickness of 2.0 mm, a minimum shielding effect performance of - 29.74 dB was achieved. Overall, the results of this study demonstrate the potential of polyaniline-NiFe2O4:Cu composites as effective microwave shielding materials.Öğe Shielding effectiveness performance of polyaniline-NiFe2O4:Cu composites for sub-8 GHz applications (vol 55, 500, 2023)(Springer, 2023) Sahin, Ethem Ilhan; Emek, Mehriban; Ibrahim, Jamal Eldin F. M.; Yumusak, Goerkem; Kartal, Mesut[Abstract Not Available]