Yazar "Iyigundogdu, Zeynep" seçeneğine göre listele
Listeleniyor 1 - 17 / 17
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A new application of avocado oil to enrich the biological activities of polycaprolactone membranes for tissue engineering(Wiley, 2024) Yurtsever, Merve Capkin; Aydogan, Selin; Iyigundogdu, Zeynep; Comertpay, Alican; Demir, Didem; Ceylan, SedaThe metabolites synthesized by plants to protect themselves serves as natural antimicrobial agents used in biomaterials. In this study, avocado oil (AO), was incorporated as a plant source and natural antimicrobial agent into polycaprolactone (PCL) membranes. The effects of varying AO ratios (25, 50, and 100 wt%.-PCL@25AO, PCL@50AO, PCL@100AO) on PCL membrane morphology, chemical structure, wettability, antimicrobial activity, and cell viabilities were investigated. It was demonstrated that the AO acts as a pore-forming agent in solvent-casted membranes. Young's modulus of the membranes varied between 602.68 and 31.92 MPa and more flexible membranes were obtained with increasing AO content. Inhibition zones of AO were recorded between 7.86 and 13.97 mm against clinically relevant microbial strains including bacteria, yeast, and fungi. Antimicrobial activity of AO was retained in PCL membranes at all ratios. Resazurin assay indicated that PCL@25AO membranes were cytocompatible with mouse fibroblast cells (L929 cell line) on day 6 showing 72.4% cell viability with respect to neat PCL membranes. Viability results were supported by scanning electron microscopy images and DAPI staining. The overall results of this study highlight the potential of PCL@25AO membranes as a biomaterial with antimicrobial properties, cytocompatibility, and mechanical strength suitable for various biomedical applications. imageÖğe A new application of avocado oil to enrich the biological activities of polycaprolactone membranes for tissue engineering(Wiley, 2024) Yurtsever, Merve Capkin; Aydogan, Selin; Iyigundogdu, Zeynep; Comertpay, Alican; Demir, Didem; Ceylan, SedaThe metabolites synthesized by plants to protect themselves serves as natural antimicrobial agents used in biomaterials. In this study, avocado oil (AO), was incorporated as a plant source and natural antimicrobial agent into polycaprolactone (PCL) membranes. The effects of varying AO ratios (25, 50, and 100 wt%.-PCL@25AO, PCL@50AO, PCL@100AO) on PCL membrane morphology, chemical structure, wettability, antimicrobial activity, and cell viabilities were investigated. It was demonstrated that the AO acts as a pore-forming agent in solvent-casted membranes. Young's modulus of the membranes varied between 602.68 and 31.92 MPa and more flexible membranes were obtained with increasing AO content. Inhibition zones of AO were recorded between 7.86 and 13.97 mm against clinically relevant microbial strains including bacteria, yeast, and fungi. Antimicrobial activity of AO was retained in PCL membranes at all ratios. Resazurin assay indicated that PCL@25AO membranes were cytocompatible with mouse fibroblast cells (L929 cell line) on day 6 showing 72.4% cell viability with respect to neat PCL membranes. Viability results were supported by scanning electron microscopy images and DAPI staining. The overall results of this study highlight the potential of PCL@25AO membranes as a biomaterial with antimicrobial properties, cytocompatibility, and mechanical strength suitable for various biomedical applications. imageÖğe Determination of antimicrobial and antiviral properties of IR3535(Springer, 2019) Iyigundogdu, Zeynep; Kalayci, Sadik; Asutay, Ayla Burcin; Sahin, FikrettinInsect repellent is a substance directly applied to skin or clothing in order to repel flies, mosquitoes, ticks etc. IR3535 or Ethyl butylacetylaminopropionate (EBAAP) is a relatively new repellent which is classified as a biopesticide due to exceptional skin tolerance and overall safety. The repellency against various insect and ticks, and the low toxicity of IR3535 are well acknowledged. However, there has been no attempt to investigate the effects on microorganisms or viruses up to now. In the present study, antimicrobial activity was investigated based on disc diffusion and micro-well dilution assays. Disc diffusion assays revealed IR3535 displayed remarkable antimicrobial activity on the microorganisms tested. MIC results showed that the antifungal efficiency of IR3535 is higher with respect to its antibacterial and anticandidal efficiency. Moreover, antiviral test results revealed that IR3535 showed antiviral effects against Poliovirus and Adenovirus. This is the first study that reveals IR3535's antimicrobial and antiviral properties against a broad range of microorganisms and viruses. In consideration of the antimicrobial and antiviral properties, IR3535 is a promising agent that could be used to develop novel therapeutic approaches, new application areas and formulations in the future.Öğe Efficacy of a newly developed seed coating formulation for the control of seed-borne diseases(Tubitak Scientific & Technological Research Council Turkey, 2022) Bouri, Meriain; Iyigundogdu, Zeynep; Lok, Pinar; Sahin, FikrettinSeed coating is receiving increased relevance in sustainable agriculture, to reduce the usage of pesticides and protect the natural environment. In this study, a new formulation based on the combination of two active constituents (zinc pyrithione and triclosan) and an inactive component (carboxymethyl cellulose polymer) was optimized for seed coating to control seed-borne pathogens. According to the in vitro antimicrobial tests, the combination of zinc pyrithione and triclosan showed a broader spectrum of phytopathogenic bacteria and fungi control. Coated seeds from different plant species with 2% of zinc pyrithione, 0.05% of triclosan and, 0.5% of carboxymethyl cellulose did not show any microorganisms development on culture media, contrarily to the noncoated ones. Germination quality and seedling growth of treated groups were enhanced in the presence of natural seed-borne pathogens and not affected in pathogen-free seeds compared to the nontreated groups. Thus, this novel seed coating formulation is a promising antimicrobial agent that could be used in the prevention of seed-borne diseases without any side effect on the seedling establishment.Öğe Flexible polyurethane foams reinforced with graphene and boron nitride nanofillers(Wiley, 2023) Li, Owen; Tamrakar, Sandeep; Iyigundogdu, Zeynep; Mielewski, Debbie; Wyss, Kevin; Tour, James M.; Kiziltas, AlperThe effect of three types of nanofillers on the physical, mechanical, and thermal properties of flexible polyurethane foams (FPUF) was studied. FPUF with nanofillers are of interest to the automotive industry due to their potential for enhancing compression properties and enabling sustainable foams. Holey and wrinkled flash graphene, and untreated and silane coated boron nitride were tested as fillers up to 0.1 wt% loading level. Flash graphene filled FPUF showed significant improvement in compressive properties, especially at the 0.025 wt% loading level, showing a 22% increase in compressive force deflection at 25% strain and a 17% increase at 50% strain compared to the unfilled control foam sample. Boron nitride nanoparticles, treated and untreated, were shown to be an effective means of reducing wet compression set properties, addressing a key area of concern for sustainable polyols. Wet compression set was reduced by 20%-30% for most boron nitride foams compared to their unfilled control samples. Boron nitride may enable implementation of more sustainable polyols in automotive FPUF. Nanofillers did not significantly improve thermal stability of FPUF.Öğe Flexible polyurethane foams reinforced with graphene and boron nitride nanofillers(Wiley, 2023) Li, Owen; Tamrakar, Sandeep; Iyigundogdu, Zeynep; Mielewski, Debbie; Wyss, Kevin; Tour, James M.; Kiziltas, AlperThe effect of three types of nanofillers on the physical, mechanical, and thermal properties of flexible polyurethane foams (FPUF) was studied. FPUF with nanofillers are of interest to the automotive industry due to their potential for enhancing compression properties and enabling sustainable foams. Holey and wrinkled flash graphene, and untreated and silane coated boron nitride were tested as fillers up to 0.1 wt% loading level. Flash graphene filled FPUF showed significant improvement in compressive properties, especially at the 0.025 wt% loading level, showing a 22% increase in compressive force deflection at 25% strain and a 17% increase at 50% strain compared to the unfilled control foam sample. Boron nitride nanoparticles, treated and untreated, were shown to be an effective means of reducing wet compression set properties, addressing a key area of concern for sustainable polyols. Wet compression set was reduced by 20%-30% for most boron nitride foams compared to their unfilled control samples. Boron nitride may enable implementation of more sustainable polyols in automotive FPUF. Nanofillers did not significantly improve thermal stability of FPUF.Öğe GREEN SYNTHESIZED SILVER NANOPARTICLES LOADED PVA/STARCH CRYOGEL SCAFFOLDS WITH ANTIBACTERIAL PROPERTIES(Univ North, 2019) Demir, Didem; Ceylan, Seda; Gul, Gulsah; Iyigundogdu, Zeynep; Bolgen, NimetIn this study, Polyvinyl alcohol/Starch (PVA/Starch) cryogel scaffolds were combined with antibacterial silver nanoparticles (AgNPs), and the antimicrobial properties of composite scaffolds were determined for potential in tissue engineering applications. The porous PVA/Starch scaffolds were prepared by cryogelation technique. The nanoparticles were prepared by green synthesis from Aloe barbadensis leaf extract and characterized. The antibacterial, antifungal and antiyeast properties of AgNPs and AgNPs loaded PVA/Starch cryogel scaffolds were investigated. The highest antimicrobial activity of composite scaffold was found against Pseudomonas aeruginosa. Based on our studies, the results indicate that biodegradable, biocompatible and antimicrobial AgNPs loaded PVA/Starch scaffolds have potential to be used at an infection site in tissue engineering applications.Öğe GREEN SYNTHESIZED SILVER NANOPARTICLES LOADED PVA/STARCH CRYOGEL SCAFFOLDS WITH ANTIBACTERIAL PROPERTIES(Univ North, 2019) Demir, Didem; Ceylan, Seda; Gul, Gulsah; Iyigundogdu, Zeynep; Bolgen, NimetIn this study, Polyvinyl alcohol/Starch (PVA/Starch) cryogel scaffolds were combined with antibacterial silver nanoparticles (AgNPs), and the antimicrobial properties of composite scaffolds were determined for potential in tissue engineering applications. The porous PVA/Starch scaffolds were prepared by cryogelation technique. The nanoparticles were prepared by green synthesis from Aloe barbadensis leaf extract and characterized. The antibacterial, antifungal and antiyeast properties of AgNPs and AgNPs loaded PVA/Starch cryogel scaffolds were investigated. The highest antimicrobial activity of composite scaffold was found against Pseudomonas aeruginosa. Based on our studies, the results indicate that biodegradable, biocompatible and antimicrobial AgNPs loaded PVA/Starch scaffolds have potential to be used at an infection site in tissue engineering applications.Öğe Long-term durability of thermoplastic elastomer containing antiviral additives for mobility applications(Wiley, 2024) Iyigundogdu, Zeynep; Couvreur, Rachel; Tamrakar, Sandeep; Yoon, Jaewon; Basar, Basak; Ersoy, Osman G.; Sahin, FikrettinIn the mobility market, there is a demand from customers for antimicrobial protection. As a result, the market has grown considerably to provide antiviral and antimicrobial polymers and coatings. This study examines how the efficacy of a non-commercial antimicrobial thermoplastic elastomer will change over the life of the application. Using an example application of an electric scooter handlebar grip, durability requirements were identified, and antiviral efficacy (exceeding a log value of 3 or >99.9 microbial growth reduction) was compared before and after testing. A scooter handlebar grip was selected as the ideal example application as it was a high-touch surface, with several different riders. During the start of this study, scooter companies were encouraging their riders to disinfect scooter handlebars before riding, use hand sanitizer, and wear gloves. If the handlebar grip could be antimicrobial, then they could eliminate these steps and provide a safe ride for the users. In order to simulate long-term durability, UV exposure, temperature, humidity, artificial sweat, sunscreen, insect repellent, and abrasion tests were performed and evaluated in terms of antiviral activity. Accelerated weathering reduced the virucidal activity of the sample versus unexposed antiviral thermoplastic elastomer (TPE). However, the efficacy increased with contact time from 90% to 96.83% at 30 and 120 min, respectively. Abrasion resistance of antiviral TPE showed a volume loss of 66 mm3 compared to control samples of 83 mm3. The antiviral TPE sample exhibited slightly lower efficacy compared to the control after exposure to the artificial sweat (99.43% vs. 99.95%). Additionally, a skin tolerance test conducted on rabbits showed that antiviral TPE was not an irritant and showed no dermal toxicity. The outcome of this study will lead to the development of long-term durable antimicrobial material for the transportation industry.Öğe Long-term durability of thermoplastic elastomer containing antiviral additives for mobility applications(Wiley, 2024) Iyigundogdu, Zeynep; Couvreur, Rachel; Tamrakar, Sandeep; Yoon, Jaewon; Basar, Basak; Ersoy, Osman G.; Sahin, FikrettinIn the mobility market, there is a demand from customers for antimicrobial protection. As a result, the market has grown considerably to provide antiviral and antimicrobial polymers and coatings. This study examines how the efficacy of a non-commercial antimicrobial thermoplastic elastomer will change over the life of the application. Using an example application of an electric scooter handlebar grip, durability requirements were identified, and antiviral efficacy (exceeding a log value of 3 or >99.9 microbial growth reduction) was compared before and after testing. A scooter handlebar grip was selected as the ideal example application as it was a high-touch surface, with several different riders. During the start of this study, scooter companies were encouraging their riders to disinfect scooter handlebars before riding, use hand sanitizer, and wear gloves. If the handlebar grip could be antimicrobial, then they could eliminate these steps and provide a safe ride for the users. In order to simulate long-term durability, UV exposure, temperature, humidity, artificial sweat, sunscreen, insect repellent, and abrasion tests were performed and evaluated in terms of antiviral activity. Accelerated weathering reduced the virucidal activity of the sample versus unexposed antiviral thermoplastic elastomer (TPE). However, the efficacy increased with contact time from 90% to 96.83% at 30 and 120 min, respectively. Abrasion resistance of antiviral TPE showed a volume loss of 66 mm3 compared to control samples of 83 mm3. The antiviral TPE sample exhibited slightly lower efficacy compared to the control after exposure to the artificial sweat (99.43% vs. 99.95%). Additionally, a skin tolerance test conducted on rabbits showed that antiviral TPE was not an irritant and showed no dermal toxicity. The outcome of this study will lead to the development of long-term durable antimicrobial material for the transportation industry.Öğe Melissa officinalis essential oil loaded polycaprolactone membranes: evaluation of antimicrobial activities and cytocompatibility for tissue engineering applications(Iop Publishing Ltd, 2023) Iyigundogdu, Zeynep; Petek, Betul Sena; Yurtsever, Merve Capkin; Ceylan, SedaAntimicrobial biomaterials play important role in tissue engineering applications to protect damaged tissue from infections. The aim of this study is producing antimicrobial polycaprolactone (PCL) membranes by using a plant based antimicrobial agent. Therefore,Melissa officinalisessential oil (MEO) was investigated against ten types of microorganisms and remarkable antimicrobial activity was demonstrated. PCL:MEO membranes were prepared by solvent casting method by mixing MEO into PCL in various ratios (PCL:0M, PCL:0.25M, PCL:0.5M, and PCL:1M w/w). Water contact angle measurements showed that hydrophilicity of the membranes increased with increasing concentrations of MEO from 103.44 degrees to 83.36 degrees for PCL:0M and PCL:1M, respectively. It was determined that there was an inverse relationship between the MEO concentration and the mechanical properties. Notable antioxidant activity of PCL/MEO membranes was exhibited by the inhibition percent of 2,2-diphenyl-1-picrylhydrazyl (DPPH) which was increased from 24.74% to 44.79% for PCL:0M and PCL:1M, respectively. The antimicrobial activity of MEO was also highly maintained in PCL membranes. For PCL/MEO membranes, at least 99.9% of microorganisms were inhibited. Cytocompatibility of the membranes were investigated by resazurin assay, scanning electron microscopy analysis and 4',6-diamidino-2-phenylindole (DAPI) staining. PCL:0.25M and PCL:0.5M membranes supported the viability of L929 cells more than 87% when compared to PCL:0M membranes on day 6. However, the viability of L929 cells on PCL:1M membranes was about 43% indicating significant decrease on cellular activity. In conclusion, PCL:0.25M and PCL:0.5M membranes with their high antimicrobial activity, acceptable mechanical properties and cytocompatible properties, they can be considered as an alternative biomaterial for tissue engineering applications.Öğe Synergistic effects of zinc borate and graphene on enhanced thermal stability and antimicrobial properties of poly(methyl methacrylate)(Wiley, 2023) Iyigundogdu, ZeynepThe use of graphene nanoplatelets (GnP) as reinforcing material for thermoplastic polymer matrices, polymethyl methacrylate (PMMA) and zinc borate (ZnB), as an antimicrobial and fire-retardant agent was studied. PMMA-ZnB and PMMA-GnP-ZnB (ZG) composite films were fabricated with different ZnB concentrations (2.5, 5, 10 wt%) by solvent casting method using acetone. The effect of additives on the antimicrobial activity, thermal and mechanical properties, and surface morphologies of the composites were investigated. Antimicrobial surface activity tests were conducted against seven microorganisms, including bacterial and fungal species. An improvement in antimicrobial activity by up to 99.99% with increasing ZnB content was observed. Thermal stability was increased with increasing concentration of ZnB and a combination of ZnB and GnP additions. 10% ZG-based composites increased the % char residue value of PMMA from 0.5% to 9.3%. The incorporation of the ZnB and GnP into the PMMA matrix resulted in an increase in the calculated limiting oxygen index (LOI). 10% and 50% weight loss temperature increased by 11.7 degrees C and 3.7 degrees C, respectively, for 10% ZG composites. The Young's modulus of the composites increased with increasing ZnB and a combination of ZnB and GnP loading (increasing by 16% to 2033 MPa with the addition of 10 wt% ZG). The commercial application for this study would be in high touch and piano black automotive interior, construction, and medical applications.Öğe Synergistic effects of zinc borate and graphene on enhanced thermal stability and antimicrobial properties of poly(methyl methacrylate)(Wiley, 2023) Iyigundogdu, ZeynepThe use of graphene nanoplatelets (GnP) as reinforcing material for thermoplastic polymer matrices, polymethyl methacrylate (PMMA) and zinc borate (ZnB), as an antimicrobial and fire-retardant agent was studied. PMMA-ZnB and PMMA-GnP-ZnB (ZG) composite films were fabricated with different ZnB concentrations (2.5, 5, 10 wt%) by solvent casting method using acetone. The effect of additives on the antimicrobial activity, thermal and mechanical properties, and surface morphologies of the composites were investigated. Antimicrobial surface activity tests were conducted against seven microorganisms, including bacterial and fungal species. An improvement in antimicrobial activity by up to 99.99% with increasing ZnB content was observed. Thermal stability was increased with increasing concentration of ZnB and a combination of ZnB and GnP additions. 10% ZG-based composites increased the % char residue value of PMMA from 0.5% to 9.3%. The incorporation of the ZnB and GnP into the PMMA matrix resulted in an increase in the calculated limiting oxygen index (LOI). 10% and 50% weight loss temperature increased by 11.7 degrees C and 3.7 degrees C, respectively, for 10% ZG composites. The Young's modulus of the composites increased with increasing ZnB and a combination of ZnB and GnP loading (increasing by 16% to 2033 MPa with the addition of 10 wt% ZG). The commercial application for this study would be in high touch and piano black automotive interior, construction, and medical applications.Öğe The effect of various boron compounds on the antimicrobial activity of hardened mortars(Elsevier Sci Ltd, 2022) Iyigundogdu, Zeynep; Saribas, IlyasThis study has examined the effect of boron compounds on the mechanical and antimicrobial properties of hardened mortars. The antimicrobial activity of six different boron minerals and compounds was tested against six microorganisms, including Gram-positive and Gram-negative bacteria, yeast, and fungus. Cement mortars containing 5% (w/w) boron mineral addition by weight of cement were exposed to flexural and compression tests on the 7th, 28th and 90th days. At the end of the 90th day, the hardened mortar specimen prepared with 5% dicalcium hexaborate pentahydrate (COL) or 5% borax pentahydrate (BPH) decreased the compressive strength 7.41 % and 31.5 %, and flexural strength 13.5 % and 32 %, respectively. Although, there are decrements in both compressive and flexural strength, values remain within the acceptable limits specified in the material code. The antimicrobial activity of these specimens was evaluated with surface antimicrobial activity tests. The hardened mortar specimen containing boron compounds showed antimicrobial activity against C. albicans and A. niger. It can be concluded that from these results, using 5 % COL and 5 % BPH as an additive or replacement to the mortar, is an alternative way to create antimicrobial surfaces within environments that have complained of mold problems and biodegradation, such as in reinforced concrete structures or in conventional buildings that need to be free of pathogenic microorganisms.Öğe The effect of various boron compounds on the antimicrobial activity of hardened mortars(Elsevier Sci Ltd, 2022) Iyigundogdu, Zeynep; Saribas, IlyasThis study has examined the effect of boron compounds on the mechanical and antimicrobial properties of hardened mortars. The antimicrobial activity of six different boron minerals and compounds was tested against six microorganisms, including Gram-positive and Gram-negative bacteria, yeast, and fungus. Cement mortars containing 5% (w/w) boron mineral addition by weight of cement were exposed to flexural and compression tests on the 7th, 28th and 90th days. At the end of the 90th day, the hardened mortar specimen prepared with 5% dicalcium hexaborate pentahydrate (COL) or 5% borax pentahydrate (BPH) decreased the compressive strength 7.41 % and 31.5 %, and flexural strength 13.5 % and 32 %, respectively. Although, there are decrements in both compressive and flexural strength, values remain within the acceptable limits specified in the material code. The antimicrobial activity of these specimens was evaluated with surface antimicrobial activity tests. The hardened mortar specimen containing boron compounds showed antimicrobial activity against C. albicans and A. niger. It can be concluded that from these results, using 5 % COL and 5 % BPH as an additive or replacement to the mortar, is an alternative way to create antimicrobial surfaces within environments that have complained of mold problems and biodegradation, such as in reinforced concrete structures or in conventional buildings that need to be free of pathogenic microorganisms.Öğe Thermoplastic elastomers containing antimicrobial and antiviral additives for mobility applications(Elsevier Sci Ltd, 2022) Iyigundogdu, Zeynep; Basar, Basak; Couvreur, Rachel; Tamrakar, Sandeep; Yoon, Jaewon; Ersoy, Osman G.; Sahin, FikrettinThe transmission of the SARS-CoV-2 coronavirus has been shown through droplets generated by infected people when coughing, sneezing, or talking in close contact. These droplets either reach the next person directly or land on nearby surfaces. The objective of this study is to develop a novel, durable, and effective disinfecting antimicrobial (antiviral, antibacterial, and antifungal) styrene-ethylene/butylene-styrene (SEBS) based thermoplastic elastomers (TPE). TPE incorporated with six different formulations was investigated for mechanical and antiviral performance. The formulations consist of a combination of zinc pyrithione (ZnPT), sodium pentaborate pentahydrate (NaB), disodium octaborate tetrahydrate (DOT), and chlorhexidine (CHX). ZnPT and DOT incorporated TPE showed a reduction of microbes such as bacteria by up to 99.99%, deactivated Adenovirus, Poliovirus, Norovirus, and reduced a strain of the coronavirus family by 99.95% in 60 min on TPE samples. Control samples had higher tensile strengths among all formulations and tensile strength decreased by around 14%, 21% and 27% for ZnPT and DOT combinations compared to control samples. The elongation at break decreased by around 7%, 9% and 12% with ZnPT and DOT combinations, where it reached minimum values of 720%, 702% and 684%, respectively. The 100% Modulus and 300% Modulus slightly increased with ZnPT and NaB combination (reaching values from 1.6 to 1.9 MPa and 2.6-2.9 MPa respectively) in comparison with control samples. The MFI also decreased with antimicrobial and antiviral additives (decreasing values from 64.8 to 43.3 g/10 min). ZnPT and NaB combination showed the lowest MFI (43.3 g/10 min) and reduced the MFI of control sample by around 33%. TPE samples containing ZnPT and DOT combination showed biocidal activity against the microorganisms tested and can be used to develop antimicrobial products for multiple touchpoints within a vehicle and micro-mobility.Öğe Thermoplastic elastomers containing antimicrobial and antiviral additives for mobility applications(Elsevier Sci Ltd, 2022) Iyigundogdu, Zeynep; Basar, Basak; Couvreur, Rachel; Tamrakar, Sandeep; Yoon, Jaewon; Ersoy, Osman G.; Sahin, FikrettinThe transmission of the SARS-CoV-2 coronavirus has been shown through droplets generated by infected people when coughing, sneezing, or talking in close contact. These droplets either reach the next person directly or land on nearby surfaces. The objective of this study is to develop a novel, durable, and effective disinfecting antimicrobial (antiviral, antibacterial, and antifungal) styrene-ethylene/butylene-styrene (SEBS) based thermoplastic elastomers (TPE). TPE incorporated with six different formulations was investigated for mechanical and antiviral performance. The formulations consist of a combination of zinc pyrithione (ZnPT), sodium pentaborate pentahydrate (NaB), disodium octaborate tetrahydrate (DOT), and chlorhexidine (CHX). ZnPT and DOT incorporated TPE showed a reduction of microbes such as bacteria by up to 99.99%, deactivated Adenovirus, Poliovirus, Norovirus, and reduced a strain of the coronavirus family by 99.95% in 60 min on TPE samples. Control samples had higher tensile strengths among all formulations and tensile strength decreased by around 14%, 21% and 27% for ZnPT and DOT combinations compared to control samples. The elongation at break decreased by around 7%, 9% and 12% with ZnPT and DOT combinations, where it reached minimum values of 720%, 702% and 684%, respectively. The 100% Modulus and 300% Modulus slightly increased with ZnPT and NaB combination (reaching values from 1.6 to 1.9 MPa and 2.6-2.9 MPa respectively) in comparison with control samples. The MFI also decreased with antimicrobial and antiviral additives (decreasing values from 64.8 to 43.3 g/10 min). ZnPT and NaB combination showed the lowest MFI (43.3 g/10 min) and reduced the MFI of control sample by around 33%. TPE samples containing ZnPT and DOT combination showed biocidal activity against the microorganisms tested and can be used to develop antimicrobial products for multiple touchpoints within a vehicle and micro-mobility.