Yazar "Iqbal, Jamshed" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A novel adaptive PD-type iterative learning control of the PMSM servo system with the friction uncertainty in low speeds(Public Library Science, 2023) Riaz, Saleem; Qi, Rong; Tutsoy, Önder; Iqbal, JamshedHigh precision demands in a large number of emerging robotic applications strengthened the role of the modern control laws in the position control of the Permanent Magnet Synchronous Motor (PMSM) servo system. This paper proposes a learning-based adaptive control approach to improve the PMSM position tracking in the presence of the friction uncertainty. In contrast to most of the reported works considering the servos operating at high speeds, this paper focuses on low speeds in which the friction stemmed deteriorations become more obvious. In this paper firstly, a servo model involving the Stribeck friction dynamics is formulated, and the unknown friction parameters are identified by a genetic algorithm from the offline data. Then, a feedforward controller is designed to inject the friction information into the loop and eliminate it before causing performance degradations. Since the friction is a kind of disturbance and leads to uncertainties having time-varying characters, an Adaptive Proportional Derivative (APD) type Iterative Learning Controller (ILC) named as the APD-ILC is designed to mitigate the friction effects. Finally, the proposed control approach is simulated in MATLAB/Simulink environment and it is compared with the conventional Proportional Integral Derivative (PID) controller, Proportional ILC (P-ILC), and Proportional Derivative ILC (PD-ILC) algorithms. The results confirm that the proposed APD-ILC significantly lessens the effects of the friction and thus noticeably improves the control performance in the low speeds of the PMSM.Öğe Minimum Distance and Minimum Time Optimal Path Planning With Bioinspired Machine Learning Algorithms for Faulty Unmanned Air Vehicles(IEEE-Inst Electrical Electronics Engineers Inc, 2024) Tutsoy, Önder; Ahmadi, Karim; Asadi, Davood; Nabavi-Chashmi, Seyed Yaser; Iqbal, JamshedUnmanned air vehicles operate in highly dynamic and unknown environments where they can encounter unexpected and unseen failures. In the presence of emergencies, autonomous unmanned air vehicles should be able to land at a minimum distance or minimum time. Impaired unmanned air vehicles define actuator failures and this impairment changes their unstable and uncertain dynamics; henceforth, path planning algorithms must be adaptive and model-free. In addition, path planning optimization problems must consider the unavoidable actuator saturations, kinematic and dynamic constraints for successful real-time applications. Therefore, this paper develops 3D path planning algorithms for quadrotors with parametric uncertainties and various constraints. In this respect, this paper constructs a multi-dimensional particle swarm optimization and a multi-dimensional genetic algorithm to plan paths for translational, rotational, and Euler angles and generates the corresponding control signals. The algorithms are assessed and compared both in the simulation and experimental environments. Results show that the multi-dimensional genetic algorithm produces shorter minimum distance and minimum time paths under the constraints. The real-time experiments prove that the quadrotor exactly follows the produced path utilizing the available maximum rotor speeds.