Yazar "Gursoy, Ercan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection(Springer, 2023) Kaya, Yasin; Gursoy, ErcanCOVID-19 is a virus that causes upper respiratory tract and lung infections. The number of cases and deaths increased daily during the pandemic. Once it is vital to diagnose such a disease in a timely manner, the researchers have focused on computer-aided diagnosis systems. Chest X-rays have helped monitor various lung diseases consisting COVID-19. In this study, we proposed a deep transfer learning approach with novel fine-tuning mechanisms to classify COVID-19 from chest X-ray images. We presented one classical and two new fine-tuning mechanisms to increase the model's performance. Two publicly available databases were combined and used for the study, which included 3616 COVID-19 and 1576 normal (healthy) and 4265 pneumonia X-ray images. The models achieved average accuracy rates of 95.62%, 96.10%, and 97.61%, respectively, for 3-class cases with fivefold cross-validation. Numerical results show that the third model reduced 81.92% of the total fine-tuning operations and achieved better results. The proposed approach is quite efficient compared with other state-of-the-art methods of detecting COVID-19.Öğe A novel multi-head CNN design to identify plant diseases using the fusion of RGB images(Elsevier, 2023) Kaya, Yasin; Gursoy, ErcanPlant diseases and insect pests cause a significant threat to agricultural production. Early detection and diagnosis of these diseases are critical and can reduce economic losses. The recent development of deep learning (DL) benefits various fields, such as image processing, remote sensing, medical diagnosis, and agriculture. This work proposed a novel approach based on DL for plant disease detection by fusing RGB and segmented images. A multi-headed DenseNet-based architecture was developed, considering two images as input. We evaluated the model on a public dataset, PlantVillage, consisting of 54183 images with 38 classes. The fivefold cross-validation technique achieved an average accuracy, recall, precision, and f1-score of 98.17%, 98.17%, 98.16%, and 98.12%, respectively. The proposed approach can distinguish various plant diseases with different characteristics by image fusion. The high success rate with low standard deviation proves the robustness of the model, and the model can be integrated into plant disease detection and early warning system.Öğe An overview of deep learning techniques for COVID-19 detection: methods, challenges, and future works(Springer, 2023) Gursoy, Ercan; Kaya, YasinThe World Health Organization (WHO) declared a pandemic in response to the coronavirus COVID-19 in 2020, which resulted in numerous deaths worldwide. Although the disease appears to have lost its impact, millions of people have been affected by this virus, and new infections still occur. Identifying COVID-19 requires a reverse transcription-polymerase chain reaction test (RT-PCR) or analysis of medical data. Due to the high cost and time required to scan and analyze medical data, researchers are focusing on using automated computer-aided methods. This review examines the applications of deep learning (DL) and machine learning (ML) in detecting COVID-19 using medical data such as CT scans, X-rays, cough sounds, MRIs, ultrasound, and clinical markers. First, the data preprocessing, the features used, and the current COVID-19 detection methods are divided into two subsections, and the studies are discussed. Second, the reported publicly available datasets, their characteristics, and the potential comparison materials mentioned in the literature are presented. Third, a comprehensive comparison is made by contrasting the similar and different aspects of the studies. Finally, the results, gaps, and limitations are summarized to stimulate the improvement of COVID-19 detection methods, and the study concludes by listing some future research directions for COVID-19 classification.