Yazar "Gunes, Recep" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Evaluation of geometrically nonlinear and elastoplastic behavior of functionally graded plates under mechanical loading-unloading(Taylor & Francis Inc, 2022) Arslan, Kemal; Gunes, Recep; Apalak, M. Kemal; Reddy, J. N.Geometrically nonlinear and elastoplastic behavior of a circular FGM (functionally graded material) plate under mechanical loading-unloading condition is investigated employing three-dimensional finite element method (FEM) modeling. The through-thickness material distribution of the FGM plate is defined by a power-law variation. The elastic mechanical properties and the elastoplastic material behavior of the FGM plate described respectively by the Mori-Tanaka scheme and the TTO (Tamura-Tomota-Ozawa) model are implemented in the FEM model. The FEM model is validated presenting a very good agreement with the studies from the literature. The influences of nonlinearity, especially the elastoplastic and elastoplastic with geometrically nonlinear behavior, load parameter and thickness-to-radius ratio in terms of nonlinearity, and material composition on the mechanical behavior of the FGM plate are examined. The FEM results are evaluated in terms of the permanent central deflection and the plastic equivalent stress distributions of the FGM plate. The results indicate that a considerable difference occurs between the elastoplastic and elastoplastic with geometrically nonlinear behavior of the FGM plate in terms of both the permanent central deflection and the plastic equivalent stress distributions except ceramic-rich composition that has almost a linear-elastic material behavior, and the geometrical nonlinearity becomes an important parameter with increasing load parameter and decreasing thickness-to-radius ratio. The combination of geometrical and material nonlinearities exhibits a significant influence on the nonlinear mechanical behavior of the FGM plate under plastic deformation.Öğe Experimental analysis on deformation and damage behavior of Al6061/SiC functionally graded plates under low-velocity impact(Elsevier Sci Ltd, 2023) Arslan, Kemal; Gunes, RecepDue to their promising features provided by ceramic and metal constituents in a single volume, Functionally Graded Materials (FGMs) have received great attention for impact applications. Most of the available studies on the low-velocity impact behavior of FGMs have been carried out by analytical or numerical methods. This study addresses an experimental analysis on the low-velocity impact response of Al6061/SiC FGM plates. The influence of the material composition of the FGM plate (from metal-rich to ceramic-rich) on the energy absorption mechanisms as well as on the deformation and damage behavior was investigated. The ceramic-rich FGM plate exhibits a quasi-brittle response that includes a combination of elastoplastic indentation and brittle failures with increasing impact energy, while the metal-rich and linear FGM plates show elastoplastic behavior. Plastic deformation is the primary energy absorption mechanism for the metal-rich and linear FGM plates, whereas plastic deformation, brittle failures (radial cracks and conoidal crack/fracture), delamination, and pore collapse are effective on the energy absorption of the ceramic-rich FGM plate.Öğe Penetration mechanics of ceramic/metal functionally graded plates under ballistic impact: An experimental perspective(Elsevier Sci Ltd, 2024) Arslan, Kemal; Gunes, RecepThis paper deals with a comprehensive experimental analysis of the penetration mechanics and failure mechanisms of SiC/AA6061 functionally graded plates under ballistic impact. The external, cross-sectional, and highspeed photographic damage and failure assessments of the plates were performed. The novelty of this study is to investigate the ballistic impact behavior of a ceramic/metal functionally graded plate with different compositional gradients in a wide range of impact velocities considering below and above the ballistic limit and to reveal a detailed analysis of the damage and failure mechanisms of the plate. This can provide fundamental insights into the design of ceramic/metal functionally graded armor materials. The results indicate that the metal-dense gradient plate shows localized ductile failures as ductile perforation and plugging, whereas the ceramic-dense gradient plate exhibits brittle failures as comminution and conoidal fracture. Tailoring a relatively continuous compositional gradient instead of an abrupt variation, namely the linear gradient, provides tensile stress wave attenuation and resistance to crack growth and fracture.