Yazar "Guldurek, Manolya" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Assessment of Corporate Carbon Footprint and Energy Analysis of Transformer Industry(Mdpi, 2024) Guldurek, Manolya; Esenboga, BurakTransformers are primarily key components in power transmission and distribution systems. In the electrical industry, transformers are becoming increasingly important to increase energy efficiency and reduce environmental impact. In the process from the production to the use of transformers, various strategies and technologies are adopted to reduce the carbon footprint. To achieve decarbonization targets and a future with sustainable energy, ongoing efforts to reduce the carbon footprint of transformers need to continue. Therefore, this study aims to calculate the carbon footprint (CF) of Beta Energy in the Adana Province of T & uuml;rkiye. A comprehensive inventory is being created to determine and monitor the greenhouse gas emissions of Beta Energy, a transformer manufacturer. This inventory includes direct and indirect greenhouse gas emissions from all of the company's activities. The findings show that in 2023, the total CF of Beta Energy is equal to 1,799,482.72 tons of CO2-eq and considering the total of 6044 transformers sold in 2023, results in 297 tons of CO2-eq/transformer per product. The results show that the transformer manufacturing industry has a high carbon footprint because it is an energy-intensive process. The areas where the most carbon emissions occur in transformer production are revealed by CF hot spot analysis in this study. To minimize both current and future greenhouse gas emissions during transformer production, the measures to be taken during the R&D, production, transportation, and service stages are revealed. This study aims to establish a foundation for Beta Energy's efforts to reduce greenhouse gas emissions by managing them effectively.Öğe Performance and Economic Analysis of Designed Different Solar Tracking Systems for Mediterranean Climate(Mdpi, 2023) Demirdelen, Tugce; Alici, Hakan; Esenboga, Burak; Guldurek, ManolyaSolar power occupies a significant position among global renewable energy sources due to its abundant energy potential. Consequently, its contribution to electricity generation is steadily increasing. However, obtaining peak efficiency from fixed solar photovoltaic (PV) panels is a formidable task due to their limited ability to consistently tap into solar energy. To tackle this issue and mitigate energy efficiency losses, the utilization of solar tracking systems has emerged as an exceptionally effective solution. These systems enable continuous adjustment of the panels' position to align with the sun's trajectory, optimizing energy absorption and enhancing overall performance. This paper presents the performance and cost analysis of three distinct solar panel tracking systems, namely, a fixed system, a single-axis system, and a dual-axis system. The systems are operated under identical coordinates and conditions. The production data are collected over a period of 15 days for comparative analysis. The tracking movements of the systems are controlled using Arduino. The mechanical components are specifically designed for the establishment of each system. The findings of this study indicate that both single-axis and dual-axis solar tracking systems outperformed fixed systems in terms of power generation. The single-axis system demonstrated a 24.367% increase in power production, while the dual-axis system showed a 32.247% increase compared to the fixed system. Moreover, a cost analysis was carried out considering the installation expenses and power production data of the three systems. It was determined that the single-axis tracking system achieved payback in 0.39 years less compared to the fixed system, while the dual-axis system achieved payback in 1.48 years less compared to the fixed system. Overall, this study underscores the advantages of implementing solar tracking systems, particularly in the single-axis and dual-axis configurations, as they contribute to higher power generation and cost-effectiveness compared to fixed systems.