Yazar "Gorjian, Shiva" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Exergoenvironmental damages assessment in a desert-based agricultural system: A case study of date production(Wiley, 2022) Hesampour, Reza; Hassani, Mehrdad; Yildizhan, Hasan; Failla, Sabina; Gorjian, ShivaDeveloping countries, especially those in hot and dry areas, need more attention to achieve sustainable development as they apply excessive inputs in production processes. The present study aims to quantify the amount of environmental emissions and determine the most appropriate pattern of energy use in the date (Phoenix dactylifera L.) production process using thermodynamic analysis. The information was gathered through questionnaires and face-to-face interviews. From the results, cumulative exergy and energy demand for one Mg of date fruit production were calculated as 697 and 1640 MJ, respectively. Carbon dioxide emission was also measured at 197 kg Mg-1. Moreover, cumulative exergy consumption illustrated that manure and diesel fuel consumption is high, though diesel fuel and N consumption are given the most cumulative energy demand. Renewability indicator, cumulative degree of perfection, and the recoverable exergy ratio value of the date fruit production process were calculated as 0.62, 2.68, and 4.32, respectively. The date's chemical exergy value was calculated to be 14.96 MJ kg(-1). Dates have a high chemical exergy value because of their high carbohydrate content and lowwater content. As a result, crop chemical combinations have a direct impact on the production process. The total direct greenhouse gas emissions induced by the inputs consumption were 310.02 kg Mg-1. Emissions to air, soil, and water were 308.76, 5.60 x 10(-1) and 6.96 x 10(-1) kg Mg-1. In general, date production in Khuzestan province is partially renewable.Öğe How May New Energy Investments Change the Sustainability of the Turkish Industrial Sector?(Mdpi, 2023) Yildizhan, Hasan; Yildirim, Cihan; Gorjian, Shiva; Ameen, ArmanUtilization of renewable energy in the Turkish industrial sector is becoming more important nowadays. The tendency toward renewable energy can be clearly seen with newly planned energy investments. The energy appearance of the Turkish industrial sector for past two decades and ongoing energy projects are discussed in this study with the help of sustainability indicators. The sustainability index is based on advanced exergy analysis and shows the environmental impact of production processes and measures the transformation of energy resources in the Turkish industrial sector. This index was approximately 2.03 in 2000 and it improved to 2.25 in 2008, and then remained constant with minor fluctuations until 2019. Depending on the fulfillment of the continuing fossil, nuclear, and recommended renewable energy investment scenarios, the sustainability index may change to between 1.96 and 2.17 by 2023. None of the ongoing investments will make a major improvement in the sustainability of the industrial sector; therefore, a major shift toward the use of more renewable energy is urgently needed. Establishing solar or wind energy microgrids plants may improve the sustainability indicators drastically, therefore, encouragement of their investments is very important.Öğe Recent advances in net-zero energy greenhouses and adapted thermal energy storage systems(Elsevier, 2021) Gorjian, Shiva; Ebadi, Hossein; Najafi, Gholamhassan; Chandel, Shyam Singh; Yildizhan, HasanIn agricultural greenhouses, employment of energy-saving strategies along with alternative energy sources has been identified as a potential solution to address the intensive energy consumption of these cultivation facilities. This study investigates the integration of renewable energy technologies, including solar thermal, solar photovoltaic (PV) and photovoltaic-thermal (PVT), geothermal, and biomass with greenhouse cultivation systems as net-Zero Energy Greenhouses (nZEGs). Solar energy is the most abundant renewable energy source that has been successfully used to provide thermal and electrical power requirements of greenhouses. The use of geothermal heat in greenhouses will save primary energy sources (more than 20%) and reduce operating costs. Utilizing solid biomass not only provides heating and cooling demands of greenhouses but also can supply their CO2 requirements. In terms of energy storage, the use of Sensible Thermal Energy Storage (STES) can cause a 3-5 degrees C increase in the inside air temperature while resulting in almost 28 kWh/m(2) energy saving per area of the greenhouse. Phase Change Materials (PCMs) are extensively used in TES systems and provide high thermal efficiencies and reduce energy consumption (around 30-40%) with the main drawbacks of low thermal conductivity, associated environmental concerns, and high costs.Öğe Renewable energy utilization in apple production process: A thermodynamic approach(Elsevier, 2021) Yildizhan, Hasan; Taki, Morteza; Ozilgen, Mustafa; Gorjian, ShivaHorticultural inputs have various potential environmental impacts which can be simultaneously evaluated by input-output energy methods. This technique is considered as an appropriate evaluation method to analyze ecosystems through recognizing, quantifying, and appraising resources depleted and released within the environment. This study aims to apply the thermodynamic approach to maximize the decision-making information on the environmental impacts of energy consumption in the apple production process. In this case, two different scenarios of energy and exergy flow during the apple production process are assessed thermodynamically and the environmental effects of these scenarios are evaluated. The first scenario is based on conventional agriculture carried out by using almost no renewable energy source, while in the second scenario, renewable energy sources including hydroelectricity, biodiesel, and microbial fertilizers are employed. The results indicated that in the second scenario, the Cumulative Exergy Consumption (CECx) and exergy loss are decreased by more than 93% and 74%, respectively (584.5 and 3023 MJ.ton(-1)), while the Cumulative Degree of Perfection (CDP) and Renewability Index (RI) are increased by 6.01 and 0.83, respectively. Additionally, in this scenario, the Cumulative Carbon Dioxide emission (CCO2) was decreased to 11.23 kg.ton(-1). The results also indicated that the application of microbial fertilizers along with improving the irrigation system can decrease the total energy-exergy loss and total input costs of the apple production process. The results of the present study pointed a direction for the invention and development of new technologies or methodologies in agricultural productions to improve the energy-exergy flow and mitigate CO(2 )emission in the future.