Yazar "Eliguzel, Nazmiye" seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A novel approach for text categorization by applying hybrid genetic bat algorithm through feature extraction and feature selection methods(Pergamon-Elsevier Science Ltd, 2022) Eliguzel, Nazmiye; Cetinkaya, Cihan; Dereli, TuerkayDue to the rapid incline in the number of documents along with social media usage, text categorization has become an important concept. There are tasks required to be fulfilled during the text categorization, such as extracting useful data from different perspectives, reducing the high feature space dimension, and improving effectiveness. In order to accomplish these tasks, feature selection, and feature extraction gain importance. This paper investigates how to solve feature selection and extraction problems. Also, this study aims to decide which topics are the focus of a document. Moreover, the Twitter data-set is utilized as a document and an Uncapacitated P-Median Problem (UPMP) is applied to make clustering. In this study, UPMP is used on Twitter data collection for the first time to collect clustered tweets. Therefore, a novel hybrid genetic bat algorithm (HGBA) is proposed to solve the UPMP for our case. The proposed novel approach is applied to analyze the Twitter data-set of the Nepal earthquake. The first part of the analysis includes the data pre-processing stage. The Latent Dirichlet Allocation (LDA) method is applied to the pre-processed text. After that, a similarity (distance) matrix is generated by utilizing the Jensen Shannon Divergence (JSD) model. The study's main goal is to use Twitter to assess the needs of victims during and after a disaster. To evaluate the applicability of the proposed approach, experiments are conducted on the OR-Library data-set. The results demonstrate that the proposed approach successfully extracts topics and categorizes text.Öğe A state-of-art optimization method for analyzing the tweets of earthquake-prone region(Springer London Ltd, 2021) Eliguzel, Nazmiye; Cetinkaya, Cihan; Dereli, TurkayWith the increase in accumulated data and usage of the Internet, social media such as Twitter has become a fundamental tool to access all kinds of information. Therefore, it can be expressed that processing, preparing data, and eliminating unnecessary information on Twitter gains its importance rapidly. In particular, it is very important to analyze the information and make it available in emergencies such as disasters. In the proposed study, an earthquake with the magnitude of Mw = 6.8 on the Richter scale that occurred on January 24, 2020, in Elazig province, Turkey, is analyzed in detail. Tweets under twelve hashtags are clustered separately by utilizing the Social Spider Optimization (SSO) algorithm with some modifications. The sum-of intra-cluster distances (SICD) is utilized to measure the performance of the proposed clustering algorithm. In addition, SICD, which works in a way of assigning a new solution to its nearest node, is used as an integer programming model to be solved with the GUROBI package program on the test data-sets. Optimal results are gathered and compared with the proposed SSO results. In the study, center tweets with optimal results are found by utilizing modified SSO. Moreover, results of the proposed SSO algorithm are compared with the K-means clustering technique which is the most popular clustering technique. The proposed SSO algorithm gives better results. Hereby, the general situation of society after an earthquake is deduced to provide moral and material supports.Öğe Application of named entity recognition on tweets during earthquake disaster: a deep learning-based approach(Springer, 2022) Eliguzel, Nazmiye; Cetinkaya, Cihan; Dereli, TurkayTwitter is an intensely utilized platform for disaster events and emergencies. Therefore, Twitter is an important resource for providing the essential information. Named entity recognition (NER), which is the process of determining the elementary units in a text and classifying them with pre-defined categories, plays a significant role to extract essential and usefulness information. However, NER is a challenging task due to the utilized informal text in the Twitter platform such as grammatical errors and nonstandard abbreviations. In this paper, recurrent neural network (RNN)-based approaches considering diversity of activation functions and optimization functions with NER tools are utilized to extract named entities such as organization, person, and location from the tweets. Inputs for RNN models are provided via two different NER tools which are natural language toolkit (NLTK) and general architecture for text engineering (Gate). Then, pre-labeled data are trained via GloVe word embedding technique, and RNN model variants such as LSTM, BLSTM, and GRU are demonstrated. Therefore, outperforming models among RNN variants are presented for predicting named entities. Yellowbrick interpreter is used for evaluation of the proposed method and Wilcoxon signed-rank test are applied on results of two different data sets to demonstrate consistency of the proposed method. In addition, comparison is made with existing machine learning methods. The experiments by utilizing the Nepal earthquake Twitter data set show that the RNN-based approaches achieve good results in finding named entities. In emergencies, the results of this paper can help in reducing the efforts of event location detection and provide better disaster management.Öğe Comparative analysis with topic modeling and word embedding methods after the Aegean Sea earthquake on Twitter(Springer Heidelberg, 2023) Eliguzel, Nazmiye; Cetinkaya, Cihan; Dereli, TurkayTopic detection from Twitter is a significant task that provides insight into real-time information. Recently, word embedding methods and topic modeling techniques have been utilized to find latent topics in various fields. Detecting topics leads to effective semantic structure and provides a better understanding of users. In the proposed study, different types of topic detection techniques are utilized, which are latent semantic analysis (LSA), Word2Vec, and latent Dirichlet allocation (LDA), and their performances are evaluated by the implementation of the K-means clustering technique on a real life application. In this case study, tweets were gathered after an earthquake with a magnitude of 6.6 on the Richter scale that took place on October 30, 2020, on the coast of the Aegean Sea (Izmir), Turkey. Tweets are clustered under fifteen hashtags separately, and the aforementioned techniques are applied to data-sets which vary in size. Therefore, the novelty of the proposed paper can be expressed as the comparison of different topic models and word embedding methods implemented for different sizes of documents in order to demonstrate the performance of these methods. While Word2Vec gives good results in small data-sets, LDA generally gives better results than Word2Vec and LSA in medium and large data-sets. Another aim of the proposed study is to provide information to decision makers for supporting victims and society. Therefore, the general situation of society is analyzed and society's attitude is demonstrated for decision-makers to take actionable activities such as psychological support, educational support, financial support, and political activities, etc.Öğe Comparison of different machine learning techniques on location extraction by utilizing geo-tagged tweets: A case study(Elsevier Sci Ltd, 2020) Eliguzel, Nazmiye; Cetinkaya, Cihan; Dereli, TurkayIn emergencies, Twitter is an important platform to get situational awareness simultaneously. Therefore, information about Twitter users' location is a fundamental aspect to understand the disaster effects. But location extraction is a challenging task. Most of the Twitter users do not share their locations in their tweets. In that respect, there are different methods proposed for location extraction which cover different fields such as statistics, machine learning, etc. This study is a sample study that utilizes geo-tagged tweets to demonstrate the importance of the location in disaster management by taking three cases into consideration. In our study, tweets are obtained by utilizing the earthquake keyword to determine the location of Twitter users. Tweets are evaluated by utilizing the Latent Dirichlet Allocation (LDA) topic model and sentiment analysis through machine learning classification algorithms including the Multinomial and Gaussian Naive Bayes, Support Vector Machine (SVM), Decision Tree, Random Forest, Extra Trees, Neural Network, k Nearest Neighbor (kNN), Stochastic Gradient Descent (SGD), and Adaptive Boosting (AdaBoost) classifications. Therefore, 10 different machine learning algorithms are applied in our study by utilizing sentiment analysis based on location-specific disaster-related tweets by aiming fast and correct response in a disaster situation. In addition, the effectiveness of each algorithm is evaluated in order to gather the right machine learning algorithm. Moreover, topic extraction via LDA is provided to comprehend the situation after a disaster. The gathered results from the application of three cases indicate that Multinomial Naive Bayes and Extra Trees machine learning algorithms give the best results with an F-measure value over 80%. The study aims to provide a quick response to earthquakes by applying the aforementioned techniques.Öğe Content analyses of the international federation of red cross and red crescent societies (ifrc) based on machine learning techniques through twitter(Springer, 2021) Dereli, Turkay; Eliguzel, Nazmiye; Cetinkaya, CihanIntensity of natural disasters has substantially increased; disaster management has gained importance along with this reason. In addition, social media has become an integral part of disaster management. Before, during and after disasters; people use social media and large number of output is obtained through social media activities. In this regard, Twitter is the most popular social media tool as micro blogging. Twitter has also become significant in complex disaster environment for coordinating events. It provides a swift way to collect crowd-sourced information. So, how do humanitarian organizations use Twitter platform? Humanitarian organizations utilize resources and related information while managing disasters. The effective use of social media by humanitarian agencies causes increased peoples' awareness. The international federation of red cross and Red Crescent Societies (IFRC) is the most significant humanitarian organization that aims providing assistance to people. Thus, the aim of this paper is to analyze IFRC's activities on Twitter and propose a perspective in the light of theoretical framework. Approximately, 5201 tweets are passed the pre-processing level, some important topics are extracted utilizing word labeling, latent dirichlet allocation (LDA model) and bag of Ngram model and sentiment analysis is applied based on machine learning classification algorithms including Naive Bayes, support vector machine SVM), decision tree, random forest, neural network and k-nearest neighbor (kNN) classifications. According to the classification accuracies, results demonstrate the superiority of support vector machine among other classification algorithms. This study shows us how IFRC uses Twitter and which topics IFRC emphasizes more.