Yazar "Celik, Mehmet Sabri" seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Adsorption Kinetics of Various Frothers on Rising Bubbles of Different Sizes under Flotation Conditions(Mdpi, 2021) Batjargal, Khandjamts; Guven, Onur; Ozdemir, Orhan; Karakashev, Stoyan, I; Grozev, Nikolay A.; Boylu, Feridun; Celik, Mehmet SabriThis paper studies the effect of the type and concentration of selected frothers, the gas flowrate, and the pore size of the porous frit on the bubble sizes (Sauter mean diameter, SMD) of bubbling flow produced in a micro-flotation cell, and the determination of bubble size distribution (BSD) in the presence of the frothers. The commercial frothers polypropylene glycols (PPG 200, 400, and 600), tri propylene glycol (BTPG), triethylene glycol (BTEG), dipropylene glycol (BDPG), and Methyl Isobutyl Carbinol (MIBC) were used in the present investigation. The frother concentration varied from 1 to 1000 ppm. The flow rate varied in the range of 25 to 100 cm(3)/min. The pore sizes of the frit were selected as 10-16 mu m, 16-40 mu m, and 40-100 mu m. Each frother exhibited its own unique ability in preventing coalescence of the bubbles in the order of BTEG < BDPG < PPG 200 < MIBC < BTPG < PPG 400 < PPG 600. The factorial experiments established that the type of the frother and its concentration have a major effect on the size of the bubbles. The bubbles decreased twice their size when the frother concentration was increased from 1 ppm to 1000 ppm. The pore size of the frit is a significant factor as well. The size of the bubbles can be reduced from about 10% to about 40% by decreasing the pores from 40-100 mu m to 10-16 mu m but the level of this decrease depends on the type of the frother. The increase of the flowrate from 25 cm(3)/min to 100 cm(3)/min produced bubbles smaller by 25% to 50% for the case of BTEG, BDPG, PPG 200, MIBC, BTPG, while a minimum of the bubble sizes was reached for the case of PPG 400 and PPG 600, beyond which the bubbles enlarged their size. The BSD in the presence of PPG 600 varied around 0.3 mm, whereas BTEG gave a wider BSD which indicated that the type of frother affected the bubble production. Our analysis shows that the first group of frothers adsorbs instantly on the bubbles, once they leave the porous frit, thus reaching equilibrium. PPG 400 and PPG 600 adsorb significantly slower on the bubbles, possibly not reaching equilibrium during their resident time.Öğe Bubbling properties of frothers and collectors mix system(Oficyna Wydawnicza Politechniki Wroclawskiej, 2022) Batjargal, Khandjamts; Guven, Onur; Ozdemir, Orhan; Karakashev, Stoyan I.; Grozev, Nikolay A.; Boylu, Feridun; Celik, Mehmet SabriThis paper studies the effect of the type and concentration of selected frothers and collectors mix system on the bubble sizes (Sauter mean diameter, SMD) of bubbling flow produced in a micro flotation cell and the determination of bubble size distribution (BSD). The usage of dodecyl amine hydrochloride (DAH) collector on the critical coalescence concentration of commercial frothers PPG200, PPG400, and PPG600 was investigated in detail. The results of these studies showed that the usage of DAH decreased the CCC of these frothers. Each frother + collector mixing system exhibited its unique ability in preventing coalescence of the bubbles in the order of PPG200 < PPG400 < PPG600. The factorial experiments established that the type of the frother, collector, and their concentration had a major effect on the size of the bubbles. The BSD in the presence of PPG600 + DAH mix system resulted in a little bit wider BSD which indicated the effect of frother in mixedÖğe Correlation of Flotation Recoveries and Bubble-Particle Attachment Time for Dodecyl Ammonium Hydrochloride/Frother/Quartz Flotation System(Mdpi, 2023) Batjargal, Khandjamts; Guven, Onur; Ozdemir, Orhan; Boylu, Feridun; Pural, Yusuf Enes; Celik, Mehmet SabriRecent studies in the flotation of fine particles have necessitated new techniques and analyses for developing various strategies. Particularly, the improvements in flotation chemistry including the selection of the type of frother, collector, and other reagents have become very significant. In this study, the effect of different commercial polypropylene glycol frothers (PPG200, 400, and 600) in the presence of dodecylammonium hydrochloride (DAH) was investigated for their contribution to flotation recoveries and bubble-particle attachment time values of fine quartz minerals. Zeta potential measurements with DAH were also carried out as a function of pH and reagent concentration to justify the effect of collector usage alone on the charge of particles. A linear increase in flotation recoveries against collector concentration, e.g., 7.4% recovery at 1 x 10-5 mol/L DAH and 65.4% recovery at 1 x 10-3 mol/L DAH, was obtained. In this context, the contribution of frothers was particularly important in that a recovery of 15.91% in the absence of the frother and a modest increase to 19.70% was obtained upon the addition of PPG600 at its critical coalescence concentration (CCC) of 3 ppm. Finally, a strong correlation was found between the bubble-particle attachment time and flotation recovery as a function of collector concentration (lowest attachment time vs. highest flotation recovery). The latter correlation is very promising because bubble attachment time leads to various micro-mechanisms in flotation including bubble film thinning, bubble rupture, and induction time, and consequently, frother efficiency in the presence and absence of a collector. As a result, the experimental findings were gathered to achieve a consistent base for further fundamental studies on the application of the synergistic effect of frothers and collectors in the flotation of fine particles.Öğe Correlations for Easy Calculation of the Critical Coalescence Concentration (CCC) of Simple Frothers(Mdpi, 2020) Karakashev, Stoyan I.; Grozev, Nikolay A.; Batjargal, Khandjamts; Guven, Onur; Ozdemir, Orhan; Boylu, Feridun; Celik, Mehmet SabriCan the critical coalescence concentration (CCC) of the flotation frothers be predictable? What is the relation between their molecular structure and their CCC values? A literature survey found specific correlations between the hydrophilic-lipophilic balances (HLB) and HLB/Mw (where Mw stands for the molecular mass) of homologue series of frothers and their CCC values, but the results are invalid when the molecule's functional groups change. For this reason, 37 frothers with known values of CCC were analyzed. The CCC values of seven frothers were determined, and the rest were taken from the literature. The frothers were subdivided in homologue series with an increasing number of the carbon atoms with an account for the type and the location of the functional group, thus deriving three types of correlations lnCCC =f(HLB) applicable for: (i) alcohols; (ii) propylene glycols alkyl ethers and propylene glycols; (iii) ethylene glycols alkyl ethers. The average accuracy of these correlations between CCC and HLB is 93%.Öğe Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers(Mdpi, 2020) Guven, Onur; Batjargal, Khandjamts; Ozdemir, Orhan; Karakashev, Stoyan, I; Grozev, Nikolay A.; Boylu, Feridun; Celik, Mehmet SabriIn this study, the critical coalescence concentrations (CCC) of selected commercial frother solutions, namely polypropylene glycols (PPG 200, 400, and 600), tri propylene glycol (BTPG), triethylene glycol (BTEG), dipropylene glycol (BDPG), and as a reference, methyl isobutyl carbinol (MIBC), were determined using a bubble column based on light absorption. The results for all seven frothers showed that BTEG has the worst bubble inhibiting performance, and PPG 600 has the best bubble inhibiting performance. While critical coalescence concentration (CCC) was found as 3 ppm for PPG 600, it increased to 25 ppm for BTEG. In the case of MIBC, which was the reference point, the CCC value was found as 10 ppm, which was consistent with the literature. The surface tension isotherms of the frothers were determined and analyzed with one of the latest adsorption models. The results indicated that the polypropylene glycol frothers showed more surface activity compared to alcohol or other frothers investigated. This is due to the additional reorganization of the PPG molecules on the air/water interface, thus boosting its surface activity.Öğe Frothing Performance of Frother-Collector Mixtures as Determined by Dynamic Foam Analyzer and Its Implications in Flotation(Mdpi, 2023) Batjargal, Khandjamts; Guven, Onur; Ozdemir, Orhan; Karakashev, Stoyan I. I.; Grozev, Nikolay A. A.; Boylu, Feridun; Celik, Mehmet SabriIn recent years, most of the studies have been adapted to determine the optimum conditions for the flotation of very fine minerals. In this context, besides parameters such as particle size, morphology, and pH, the effects of frother type and its concentration present a very significant role in optimizing the flotation conditions. Therefore, the effects of froth stability during flotation can be considered one of the most important issues. Considering that knowledge in mind, in this study, the foamability and froth decay rate of six frothers (PPG200, PPG400, PPG600, BTEG, BTPG, and BDPG) having different molecular weights but similar polyglycol structures were investigated. In addition, methyl isobutyl carbinol (MIBC) which is a well-known frother type in the industry was also used as a reference. Additionally, a series of tests were also performed in the presence of collectors (Dodecylamine hydrochloride, DAH, and sodium oleate, NaOL) + frother mixtures to mimic the flotation conditions. The results of these tests indicated that the bubble size became finer at even low concentrations of PPG600 and PPG400 frothers. Following that, a significant decrease in bubble size was also found for the collector + frother mixtures system regardless of the concentration of the frothers.Öğe Wetting properties of blood lipid fractions on different titanium surfaces(Springer Japan Kk, 2020) Koca, Revan Birke; Guven, Onur; Celik, Mehmet Sabri; Firatli, ErhanBackground Blood is the first tissue contacting the implant surface and starting the biological interactions to enhance osseointegration and stimulate bone formation with the progenitor cytokines, chemokines, and growth factors. The coagulation cascade initiates the first step of osseointegration between implant and neighboring tissues. The wound healing may be inadequate unless the blood wets the implant surface properly. Wettability is one of the most important features of the implant surface while lipid level constitutes a milestone that may change the energy of blood, which determines its distribution on implant material. Thus, the aim of this study was to evaluate the effect of lipid component of blood as cholesterol and its treatment on their wetting behavior of titanium surfaces. Methods Five surface groups were formed including grade 4 titanium-machined, grade 4 titanium-SLA, grade 4 titanium-SLActive, Roxolid-SLA, and Roxolid-SLActive. In healthy, hyperlipidemic, and treatment situations, blood was taken from eight rabbits and dropped to the disc surfaces. Contact angles were measured between the blood samples and disc surfaces. Results A significant difference was found between both machined and SLActive surfaces, SLA and SLActive surfaces in the hyperlipidemic period, and only Roxolid-SLA and SLActive surfaces during the treatment period. When evaluated according to time, only grade 4-machined and Grade 4-SLA surfaces showed a significant difference. Conclusions Our findings indicated that each period has its own characteristics and showed the importance of cholesterol in blood structure on applicability of implant surfaces.