Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Brancus, Mihaela" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Forecasting ground-level ozone and fine particulate matter concentrations at Craiova city using a meta-hybrid deep learning model
    (Elsevier, 2024) El Mghouchi, Youness; Udristioiu, Mihaela T.; Yildizhan, Hasan; Brancus, Mihaela
    Air quality forecasting is vital for managing and mitigating the adverse effects of air pollution on human health, crops, and the environment. This study aims to forecast daily time series of ozone and fine particulate matter (PM) concentrations using a meta-hybrid deep NARMAX (Nonlinear Auto-Regressive Moving Average with eXogenous inputs) model. Two datasets were utilised: (a) data on meteorological parameters (temperature, air pressure, relative humidity) and air pollutant concentrations (particulate matter, ozone, dioxide of carbon, volatile organic compounds, formaldehyde) provided by a sensor model A3 situated in the centre of Craiova city, and (b) data on wind direction, wind speed, and sunshine duration provided by the National Meteorological Administration. The data sets covered a time interval from December 10, 2020, to January 05, 2024. Initially, a statistical analysis was conducted to assess the correlation between variables. Results revealed that ozone concentration is primarily influenced by meteorological variables such as temperature (r = 0.79), sunshine duration (r = 0.55), and relative humidity (r = -0.48), and secondarily by air pollution indicators including VOC (r = -0.34), PM concentrations (r = -0.34), and CO2 (r = -0.3). In the subsequent stage, thirteen Machine Learning (ML) models were employed in conjunction with an integral feature selection (IFS) method to identify the best combinations of predictor variables for predicting ozone and PMs. Finally, a deep NARMAX model was developed to forecast the next periods of ozone and PMs based on the optimal combinations identified earlier. Results indicated the selection of sixty best models for ozone forecasting and four best models for PMs. The R-2 values surpassed 0.97 for ozone and exceeded 0.8 for PMs, demonstrating the efficacy of the forecasting approach.

| Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Balcalı Mahallesi, Güney Kampüs, 10. Sokak, No: 1U, Sarıçam, Adana, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim