Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Boyukdibi, Omer" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Comparative analysis of Multiple linear Regression (MLR) and Adaptive Network-Based fuzzy Inference Systems (ANFIS) methods for vibration prediction of a diesel engine containing NH3 additive
    (Elsevier Sci Ltd, 2023) Cagil, Gultekin; Guller, Sena Nur; Unlu, Ayse; Boyukdibi, Omer; Tuccar, Gokhan
    With the increase in population, the need for fuel has led researchers to search for alternative green fuels. The leading of these alternatives is Ammonia (NH3), which minimizes carbon emission as opposed to petroleum derivatives that contain carbon, primarily when used as fuel. In this study, NH3 was mixed with sunflower biodiesel in different volumetric ratios and burned at varying engine speeds using a diesel engine, recording experimental vibration data in the engine block. With these obtained data, Multiple Linear Regression (MLR) and Adaptive-Network Based Fuzzy Inference Systems (ANFIS) methods were used to compare the two methods by examining the effect of inputs on output and the factors affecting output. In this context, a total of 5 variables, namely NH3 additive rate, x-axis (m/s2), y-axis (m/s2), RMS (m/s2), and Engine Speed (m/s), were used as inputs in both models and the dependent variable z-axis (m/s2) was estimated. For this purpose, first of all, estimation was carried out with MLR method, then different models were created with ANFIS method, and the prediction performances of both methods were calculated. In the performance evaluation of the test data, R2 (certainty coefficient) value for MLR was found as 0.58, Mean Squared Error (MSE) was 10.61, Mean Absolute Error (MAE) was 2.43, and Root Mean Squared Error (RMSE) was 3.25, while R2 value for ANFIS was calculated as 0.86, MSE 3.85, MAE 1.25 and RMSE 1.96. When both methods are compared in terms of performance, it is seen that ANFIS gives better results than MLR.

| Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Balcalı Mahallesi, Güney Kampüs, 10. Sokak, No: 1U, Sarıçam, Adana, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim