Yazar "Barkana, Duygun Erol" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Novel Exploration-Exploitation-Based Adaptive Law for Intelligent Model-Free Control Approaches(IEEE-Inst Electrical Electronics Engineers Inc, 2023) Tutsoy, Önder; Barkana, Duygun Erol; Balikci, KemalModel-free control approaches require advanced exploration-exploitation policies to achieve practical tasks such as learning to bipedal robot walk in unstructured environments. In this article, we first construct a comprehensive exploration-exploitation policy that carries quality knowledge about the long-term predictor and the control policy, and the control signal of the model-free algorithms. Therefore, the developed model-free algorithm continues exploration by adjusting its unknown parameters until the desired learning and control are accomplished. Second, we provide an utterly model-free adaptive law enriched with the exploration-exploitation policy and derived step-by-step using the exact analogy of the model-based solution. The obtained adaptive control law considers the control signal saturation and the control signal (input) delay. Performed Lyapunov stability analysis ensures the convergence of the adaptive law that can also be used for intelligent control approaches. Third, we implement the adaptive algorithm in real time on a challenging benchmark system: a fourth-order, coupled dynamics, input saturated, and time-delayed underactuated manipulator. The results show that the proposed adaptive algorithm explores larger state-action spaces and treats the vanishing gradient problem in both learning and control. Also, we notice from the results that the learning and control properties of the adaptive algorithm are optimized as required.Öğe Design of a completely model free adaptive control in the presence of parametric, non-parametric uncertainties and random control signal delay(Elsevier Science Inc, 2018) Tutsoy, Önder; Barkana, Duygun Erol; Tugal, HarunIn this paper, an adaptive controller is developed for discrete time linear systems that takes into account parametric uncertainty, internal-external non-parametric random uncertainties, and time varying control signal delay. Additionally, the proposed adaptive control is designed in such a way that it is utterly model free. Even though these properties are studied separately in the literature, they are not taken into account all together in adaptive control literature. The Q-function is used to estimate long-term performance of the proposed adaptive controller. Control policy is generated based on the long-term predicted value, and this policy searches an optimal stabilizing control signal for uncertain and unstable systems. The derived control law does not require an initial stabilizing control assumption as in the ones in the recent literature. Learning error, control signal convergence, minimized Q-function, and instantaneous reward are analyzed to demonstrate the stability and effectiveness of the proposed adaptive controller in a simulation environment. Finally, key insights on parameters convergence of the learning and control signals are provided. (C) 2018 ISA. Published by Elsevier Ltd. All rights reserved.Öğe Learning to balance an NAO robot using reinforcement learning with symbolic inverse kinematic(Sage Publications Ltd, 2017) Tutsoy, Önder; Barkana, Duygun Erol; Colak, SuleAn autonomous humanoid robot (HR) with learning and control algorithms is able to balance itself during sitting down, standing up, walking and running operations, as humans do. In this study, reinforcement learning (RL) with a complete symbolic inverse kinematic (IK) solution is developed to balance the full lower body of a three-dimensional (3D) NAO HR which has 12 degrees of freedom. The IK solution converts the lower body trajectories, which are learned by RL, into reference positions for the joints of the NAO robot. This reduces the dimensionality of the learning and control problems since the IK integrated with the RL eliminates the need to use whole HR states. The IK solution in 3D space takes into account not only the legs but also the full lower body; hence, it is possible to incorporate the effect of the foot and hip lengths on the IK solution. The accuracy and capability of following real joint states are evaluated in the simulation environment. MapleSim is used to model the full lower body, and the developed RL is combined with this model by utilizing Modelica and Maple software properties. The results of the simulation show that the value function is maximized, temporal difference error is reduced to zero, the lower body is stabilized at the upright, and the convergence speed of the RL is improved with use of the symbolic IK solution.Öğe Model free adaptive control of the under-actuated robot manipulator with the chaotic dynamics(Elsevier Science Inc, 2021) Tutsoy, Önder; Barkana, Duygun ErolDevelopment of practical control approaches for the under-actuated chaotic systems such as the robot manipulators are challenging due to the unpredictable character of the chaotic dynamics, and the inevitable real-time application properties like delays, saturations, and uncertainties In this paper, we propose a model free digital adaptive control approach, which considers the time delay of the control signal, actuator saturation, and non-parametric uncertainties, for an under-actuated manipulator. We also develop a chaos control to learn the unbiased and smooth digital control policy inside the chaotic regions of the continuous time under-actuated manipulator. We perform real-time experiments in a dynamic environment with the proposed digital adaptive control. Then we compare the results of the learning and control with and without chaos control. We observe that the proposed model free adaptive control approach can accurately learn both the long-term predictor and unbiased control policy even in the chaotic regions of the under-actuated robot manipulator. (c) 2021 ISA. Published by Elsevier Ltd. All rights reserved.