Yazar "Al-Azri, Mohammed Said" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Comparative Study of the Properties of Gelatin (Porcine and Bovine)-Based Edible Films Loaded with Spearmint Essential Oil(Mdpi, 2023) Bhatia, Saurabh; Al-Harrasi, Ahmed; Jawad, Muhammad; Shah, Yasir Abbas; Al-Azri, Mohammed Said; Ullah, Sana; Anwer, Md KhalidGelatin (bovine/porcine)-based edible films are considered as an excellent carrier for essential oils (EOs) to preserve food quality and extend their shelf life. Spearmint essential oil (SEO) is known for its potential antioxidant and antimicrobial effects; nevertheless, its food applications are limited due to the volatile nature of its active components. Thus, edible films loaded with essential oil can be an alternative to synthetic preservatives to improve their food applications. In the present study, the effect of SEO addition was investigated on the physicochemical properties of bovine and porcine gelatin films, and antioxidant activity was assessed. GCMS (Gas chromatography mass spectrometry) analysis revealed the presence of carvone (55%) and limonene (25.3%) as major components. The incorporation of SEO into the films decreased the opacity, moisture content, water solubility, and elongation at break of bovine and porcine gelatin films. However, with the addition of EO, the thickness and water vapor permeability of bovine and porcine-based gelatin films increased. Moreover, the addition of SEO increased the tensile strength (TS) of the porcine-based film, whereas bovine samples demonstrated a decrease in tensile strength. XRD (X-ray diffraction) findings revealed a decrease in the percentage crystallinity of both types of gelatin films. SEM (scanning electron microscope) results showed the changes in the morphology of films after the addition of SEO. Antioxidant properties significantly (p < 0.05) increased with the incorporation of EO when compared with control films. Therefore, the addition of SEO to gelatin-based edible films could be an effective approach to prepare an active food packaging material to prevent food oxidation.Öğe Development, characterization, and assessment of antioxidant pectin-sodium alginate based edible films incorporated with cassia essential oil(Wiley, 2023) Bhatia, Saurabh; Al-Harrasi, Ahmed; Jawad, Muhammad; Shah, Yasir Abbas; Al-Azri, Mohammed Said; Ullah, Sana; Oz, EmelThis research was conducted in order to develop a sustainable and eco-friendly pectin-sodium alginate-based packaging material using natural additives. Cassia essential oil (CEO) is a GRAS-approved natural preservative and flavouring agent used for a variety of food products. Recent reports revealed the growing interest in using oils in packaging material as natural additives. In the current study, CEO is loaded in pectin-sodium alginate-based composite films. The main component observed in CEO was cinnamaldehyde which was evaluated by employing gas chromatography-mass spectrometry (GCMS) analysis. Moreover, the incorporation of CEO improved the tensile strength (TS) and elongation at break (EAB) and increased the opacity of the films. However, a decrease in the moisture content, water solubility and water vapour permeability was observed with the incorporation of EO. Additionally, SEM analysis of the CEO-loaded films revealed an improvement in their morphology. The results of the DPPH and ABTS cation scavenging assays revealed a significant (P <= 0.05) increase in antioxidant activity with the incorporation of CEO. These findings indicate that cassia essential oil can be employed as a natural additive to develop edible active packaging material. This image illustrates the effect of Cassia essential oil (CEO) on water vapour permeability, morphology, transparency, thickness, mechanical strength, moisture content, and solubility of pectin/sodium alginate based edible films for food packaging application.dagger imageÖğe Fabrication, characterization and antioxidant activities of pectin and gelatin based edible film loaded with Citrus reticulata L. essential oil(Wiley, 2024) Bhatia, Saurabh; Al-Harrasi, Ahmed; Ullah, Sana; Shah, Yasir Abbas; Al-Azri, Mohammed Said; Jawad, Muhammad; Anwer, Md KhalidIn the present work, pectin and gelatin-based edible films (EFs) loaded with Citrus reticulata L. (tangerine) essential oil were fabricated and evaluated for their potential application in food packaging. GC-MS analysis and physiochemical, mechanical, and antioxidant analysis of the synthesized edible films and oil extract were carried out. GC-MS analysis of the tangerine essential oil revealed the presence of around 40 different chemical constituents, and among them, limonene (43.85%), linalyl acetate (19.16%), linalool (18.38%), and beta-Myrcene (3.41%) were found as the major constituent. Fourier transform infrared spectroscopy showed the interaction between the functional groups of the film components. Mechanical parameter assessment showed that the tensile strength of the edible film increases and elongation at break values decreases with oil addition. The thickness of the EFs increased with oil addition, while water solubility, water vapor permeability, and transparency decreased. In antioxidant potential assessment assays, maximum activity (DPPH center dot and ABTS(center dot+) reducing potential) was reported for edible film samples containing a maximum amount (60 mu L) of tangerine oil. We found that pectin and gelatin-based edible films loaded with tangerine essential oil exhibit better characteristics and could be used as a food packaging material.Öğe Physicochemical Characterization and Antioxidant Properties of Chitosan and Sodium Alginate Based Films Incorporated with Ficus Extract(Mdpi, 2023) Bhatia, Saurabh; Al-Harrasi, Ahmed; Shah, Yasir Abbas; Jawad, Muhammad; Al-Azri, Mohammed Said; Ullah, Sana; Anwer, Md KhalidAqueous extract of fruit obtained from Ficus racemosa enriched with phenolic components was used for the first time to fabricate chitosan (CS) and sodium alginate (SA)-based edible films. The edible films supplemented with Ficus fruit aqueous extract (FFE) were characterized physiochemically (using Fourier transform infrared spectroscopy (FT-IR), Texture analyser (TA), Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and colourimeter) and biologically (using antioxidant assays). CS-SA-FFA films showed high thermal stability and high antioxidant properties. The addition of FFA into CS-SA film decreased transparency, crystallinity, tensile strength (TS), and water vapour permeability (WVP) but ameliorate moisture content (MC), elongation at break (EAB) and film thickness. The overall increase in thermal stability and antioxidant property of CS-SA-FFA films demonstrated that FFA could be alternatively used as a potent natural plant-based extract for the development of food packaging material with improved physicochemical and antioxidant properties.Öğe The Effect of Sage (Salvia sclarea) Essential Oil on the Physiochemical and Antioxidant Properties of Sodium Alginate and Casein-Based Composite Edible Films(Mdpi, 2023) Bhatia, Saurabh; Al-Harrasi, Ahmed; Shah, Yasir Abbas; Jawad, Muhammad; Al-Azri, Mohammed Said; Ullah, Sana; Anwer, Md KhalidThe aim of this study was to examine the effect of Sage (Salvia sclarea) essential oil (SEO) on the physiochemical and antioxidant properties of sodium alginate (SA) and casein (CA) based films. Thermal, mechanical, optical, structural, chemical, crystalline, and barrier properties were examined using TGA, texture analyzer, colorimeter, SEM, FTIR, and XRD. Chemical compounds of the SEO were identified via GC-MS, the most important of which were linalyl acetate (43.32%) and linalool (28.51%). The results showed that incorporating SEO caused a significant decrease in tensile strength (1.022-0.140 Mpa), elongation at break (28.2-14.6%), moisture content (25.04-14.7%) and transparency (86.1-56.2%); however, WVP (0.427-0.667 x 10(-12) g center dot cm/cm(2)center dot s center dot Pa) increased. SEM analysis showed that the incorporation of SEO increased the homogeneousness of films. TGA analysis showed that SEO-loaded films showed better thermal stability than others. FTIR analysis revealed the compatibility between the components of the films. Furthermore, increasing the concentration of SEO increased the antioxidant activity of the films. Thus, the present film shows a potential application in the food packaging industry.