Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Akdemir, Seyran" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Detection of cyberbullying on social media messages in Turkish
    (Institute of Electrical and Electronics Engineers Inc., 2017) Özel, Selma Ayşe; Akdemir, Seyran; Saraç, Esra; Aksu, Hülya
    The increased use of the Internet and the ease of access to online communities like social media have provided an avenue for cybercrimes. Cyberbullying, which is a kind of cybercrime, is defined as an aggressive, intentional action against a defenseless person by using the Internet, social media, or other electronic contents. Researchers have found that many of the bullying cases have tragically ended in suicides; hence automatic detection of cyberbullying has become important. The aim of this study is to detect cyberbullying on social media messages written in Turkish. To our knowledge, this is the first study which makes cyberbully detection on Turkish texts. We prepare a dataset from Instagram and Twitter messages written in Turkish and then we applied machine learning techniques that are Support Vector Machines (SVM), decision tree (C4.5), Naïve Bayes Multinomial, and k Nearest Neighbors (kNN) classifiers to detect cyberbullying. We also apply information gain and chi-square feature selection methods to improve the accuracy of classifiers. We observe that when both words and emoticons in the text messages are taken into account as features, cyberbully detection improves. Among the classifiers, Naïve Bayes Multinomial is the most successful one in terms both classification accuracy and running time. When feature selection is applied classification accuracy improves up to 84% for the dataset used. © 2017 IEEE.
  • [ X ]
    Öğe
    Detection of Cyberbullying on Social Media Messages in Turkish
    (IEEE, 2017) Ozel, Selma Ayse; Sarac, Esra; Akdemir, Seyran; Aksu, Hulya
    The increased use of the Internet and the ease of access to online communities like social media have provided an avenue for cybercrimes. Cyberbullying, which is a kind of cybercrime, is defined as an aggressive, intentional action against a defenseless person by using the Internet, social media, or other electronic contents. Researchers have found that many of the bullying cases have tragically ended in suicides; hence automatic detection of cyberbullying has become important. The aim of this study is to detect cyberbullying on social media messages written in Turkish. To our knowledge, this is the first study which makes cyberbully detection on Turkish texts. We prepare a dataset from Instagram and Twitter messages written in Turkish and then we applied machine learning techniques that are Support Vector Machines (SVM), decision tree (C4.5), Naive Bayes Multinomial, and k Nearest Neighbors (kNN) classifiers to detect cyberbullying. We also apply information gain and chi-square feature selection methods to improve the accuracy of classifiers. We observe that when both words and emoticons in the text messages are taken into account as features, cyberbully detection improves. Among the classifiers, Naive Bayes Multinomial is the most successful one in terms both classification accuracy and running time. When feature selection is applied classification accuracy improves up to 84% for the dataset used.

| Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Balcalı Mahallesi, Güney Kampüs, 10. Sokak, No: 1U, Sarıçam, Adana, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim