Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Aci, Cigdem Inan" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Deep Learning-Based Prediction Models for theDetection of Vitamin D Deficiency and25-Hydroxyvitamin D Levels Using Complete BloodCount Tests
    (Editura Acad Romane, 2024) Essiz, Ugur Engin; Aci, Cigdem Inan; Sarac, Esra; Aci, Mehmet
    Vitamin D (VitD) is an essential nutrient that is critical for the well-being of both adults and children, and its deficiency is recognized as a precursor to several diseases. In previous studies, researchers have approached the problem of detecting vitamin D deficiency (VDD) as a single sufficient/deficient classification problem using machine learning or statistics-based methods. The main objective of this paper is to predict a patient's VitD status (i.e., sufficiency, insufficiency, or deficiency), severity of VDD (i.e., mild, moderate, or severe), and 25-hydroxyvitamin D (25(OH)D) level in a separate deep learning (DL)-based models. An original dataset consisting of complete blood count (CBC) tests from 907 patients, including 25(OH)D concentrations, collected from a public health laboratory was used for this purpose. CNN, RNN, LSTM, GRU and Auto-encoder algorithms were used to develop DL-based models. The top 25 features in the CBC tests were carefully selected by implementing the Extra Trees Classifier and Multi-task LASSO feature selection algorithms. The performance of the models was evaluated using metrics such as accuracy, F1-score, mean absolute error, root mean square error and R-squared. Remarkably, all three models showed satisfactory results when compared to the existing literature; however, the CNN-based prediction models proved to be the most successful.

| Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Balcalı Mahallesi, Güney Kampüs, 10. Sokak, No: 1U, Sarıçam, Adana, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim