Kıbar, Günes2025-01-062025-01-0620221303-50022687-475X10.15671/hjbc.879777https://doi.org/10.15671/hjbc.879777https://search.trdizin.gov.tr/tr/yayin/detay/1129745https://hdl.handle.net/20.500.14669/415Epoxy-functional porous polyhedral oligomeric silsesquioxane (POSS) microparticles were synthesized by templated polymerization in two-steps by using monodisperse 2µm poly(GMA) seed latex particles as a template. In the first step, templated polymer latex was swollen in emulsion medium to obtain micron size porous POSS particles. In the second step, the hydrophobic monomers metharcyl-POSS, epoxy-functional monomer glycidyl methacrylate (GMA), the crosslinking agent GDMA and the thermal imitator diffused into the swollen template in emulsion medium for free-radical polymerization. The resultant poly(POSS-co-GDMA-co-GMA) microparticles were obtained in polydisperse form due to the high molecular weight of the silica cage core of POSS created difficulty in the diffusion step. However; monodisperse composite microparticles were obtained around 5.8 ± 0.4µm in size via centrifugal post-separation. The spherical fine porous hybrid structure was fully characterized as morphological, thermal, chemical composition, and crystalline form by SEM, TGA, FTIR, and XRD respectively.eninfo:eu-repo/semantics/openAccessFree radical polymerizationpolyhedral oligomeric silsesquioxane (POSS)epoxy functionalporous structureglycidyl methacrylate (GMA)monodisperseEpoxy Functional Porous POSS Microparticle SynthesisArticle3664359112974550