Sarac, BaranIvanov, Yurii P.Micusik, MatejKarazehir, TolgaPutz, BarbaraDancette, SylvainOmastova, Maria2025-01-062025-01-0620211944-82441944-825210.1021/acsami.1c085602-s2.0-85115636382https://doi.org/10.1021/acsami.1c08560https://hdl.handle.net/20.500.14669/3108Contrary to the electrochemical energy storage in Pd nanofilms challenged by diffusion limitations, extensive metalhydrogen interactions in Pd-based metallic glasses result from their grain-free structure and presence of free volume. This contribution investigates the kinetics of hydrogen-metal interactions in goldcontaining Pd-based metallic glass (MG) and crystalline Pd nanofilms for two different pore architectures and nonporous substrates. Fully amorphous MGs obtained by physical vapor deposition (PVD) co-sputtering are electrochemically hydrogenated by chronoamperometry. High-resolution (scanning) transmission electron microscopy and corresponding energydispersive X-ray analysis after hydrogenation corroborate the existence of several nanometer-sized crystals homogeneously dispersed throughout the matrix. These nanocrystals are induced by PdHx formation, which was confirmed by depth-resolved X-ray photoelectron spectroscopy, indicating an oxide-free inner layer of the nanofilm. With a larger pore diameter and spacing in the substrate (Pore40), the MG attains a frequency-independent impedance at low frequencies (similar to 500 Hz) with very high Bode magnitude stability accounting for enhanced ionic diffusion. On the contrary, on a substrate with a smaller pore diameter and spacing (Pore25), the MG shows a larger low-frequency (0.1 Hz) capacitance, linked to enhanced ionic transfer in the near-DC region. Hence, the nanoporosity of amorphous and crystalline metallic materials can be systematically adjusted depending on AC- and DC-type applications.eninfo:eu-repo/semantics/closedAccessthin filmsmetallic glasspalladiumgoldelectrochemical hydrogentransmission electron microscopyX-ray photoelectron spectroscopyequivalent circuit modelEnhancement of Interfacial Hydrogen Interactions with Nanoporous Gold-Containing Metallic GlassArticle426233634491728Q14261313WOS:000697282300026Q1