Abstract:
Flood frequency analysis is accepted as one of the most important applications of water resource engineering. Measurements with higher and lower values, such as outliers, can be seen in hydrological data sets based on longer observation periods that extend the overall range. This study used 50 and 25 years of annual maximum flow data from 1962 to 2011 and from 1987 to 2011 from the Stream Gauging Stations (SGS) numbered 1712, 1717, and 1721 located within the borders of the Eastern Mediterranean Basin. The flood discharges were estimated using Normal, Gumbel, and Pearson Type III probability distributions. The study adopted Kolmogorov-Smirnov (K-S) and Chi-squared goodness-of-fit tests to investigate the suitability of probability distribution functions. The maximum flow rates were obtained by utilizing Normal distribution in the 2-year and 5-year return periods for the flood values calculated with the raw data; however, after the modification of the outliers, maximum flood discharges were estimated by adopting the Pearson Type III function. While the maximum discharges for the 1717 SGS were determined using the Gumbel distribution, the Pearson Type III distribution function was utilized for the 1712 and 1721 SGSs. As a result of the K-S and Chi-squared tests, it was determined that adjustment of the outliers resulted in positive goodness-of-fit results with the Pearson Type III function.