dc.contributor.author |
Afser, Huseyin |
|
dc.contributor.author |
Delic, Hakan |
|
dc.date.accessioned |
2023-03-24T06:27:27Z |
|
dc.date.available |
2023-03-24T06:27:27Z |
|
dc.date.issued |
2018-10 |
|
dc.identifier.citation |
Afşer, H., & Deliç, H. (2018). Polar Codes with Higher-Order Memory. Problems of Information Transmission, 54(4), 301-328. https://doi.org/10.1134/S0032946018040014 |
tr_TR |
dc.identifier.issn |
0032-9460 |
|
dc.identifier.issn |
1608-3253 |
|
dc.identifier.uri |
http://openacccess.atu.edu.tr:8080/xmlui/handle/123456789/4167 |
|
dc.identifier.uri |
http://dx.doi.org/10.1134/S0032946018040014 |
|
dc.description |
WOS indeksli yayınlar koleksiyonu. / WOS indexed publications collection. |
tr_TR |
dc.description.abstract |
We introduce a construction of a set of code sequences {C-n((m)) : n 1, m 1} with memory order m and code length N(n). {C-n((m))} is a generalization of polar codes presented by Arkan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n - 1) and N(n - m), and {C-n((m))} coincides with the original polar codes when m = 1. We show that {C-n((m))} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error P-e of {C-n((m))} and show that Pe=O(2-N) is achievable for < 1/[1+m(phi - 1)], where phi (1, 2] is the largest real root of the polynomial F(m, ) = (m) - (m - 1) - 1. The encoding and decoding complexities of {C-n((m))} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Arkan's construction. |
tr_TR |
dc.language.iso |
en |
tr_TR |
dc.publisher |
PROBLEMS OF INFORMATION TRANSMISSION / MAIK NAUKA/INTERPERIODICA/SPRINGER |
tr_TR |
dc.relation.ispartofseries |
2018;Volume: 54 Issue: 4 |
|
dc.title |
Polar Codes with Higher-Order Memory |
tr_TR |
dc.type |
Article |
tr_TR |