DSpace Repository

Polar Codes with Higher-Order Memory

Show simple item record

dc.contributor.author Afser, Huseyin
dc.contributor.author Delic, Hakan
dc.date.accessioned 2023-03-24T06:27:27Z
dc.date.available 2023-03-24T06:27:27Z
dc.date.issued 2018-10
dc.identifier.citation Afşer, H., & Deliç, H. (2018). Polar Codes with Higher-Order Memory. Problems of Information Transmission, 54(4), 301-328. https://doi.org/10.1134/S0032946018040014 tr_TR
dc.identifier.issn 0032-9460
dc.identifier.issn 1608-3253
dc.identifier.uri http://openacccess.atu.edu.tr:8080/xmlui/handle/123456789/4167
dc.identifier.uri http://dx.doi.org/10.1134/S0032946018040014
dc.description WOS indeksli yayınlar koleksiyonu. / WOS indexed publications collection. tr_TR
dc.description.abstract We introduce a construction of a set of code sequences {C-n((m)) : n 1, m 1} with memory order m and code length N(n). {C-n((m))} is a generalization of polar codes presented by Arkan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n - 1) and N(n - m), and {C-n((m))} coincides with the original polar codes when m = 1. We show that {C-n((m))} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error P-e of {C-n((m))} and show that Pe=O(2-N) is achievable for < 1/[1+m(phi - 1)], where phi (1, 2] is the largest real root of the polynomial F(m, ) = (m) - (m - 1) - 1. The encoding and decoding complexities of {C-n((m))} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Arkan's construction. tr_TR
dc.language.iso en tr_TR
dc.publisher PROBLEMS OF INFORMATION TRANSMISSION / MAIK NAUKA/INTERPERIODICA/SPRINGER tr_TR
dc.relation.ispartofseries 2018;Volume: 54 Issue: 4
dc.title Polar Codes with Higher-Order Memory tr_TR
dc.type Article tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account