Fast, reliable and comfortable transportation of people increases the level of livability in cities. It also influences people's quality of life. Therefore, researches are needed to improve transportation services. Various models are developed to analyze the transportation services but each of which has its own advantages and disadvantages. Today, companies collect large amounts of data to improve their service quality. To survive in competition environment, they must use the collected data in order to create value for their customers and employees. There are many factors that affect the transportation services. Therefore, it is difficult to solve the problems in transportation services using classical methods. The main goal of our study is to determine the bus ticket price accurately. In this study, k-means algorithm, which is popular because of its simplicity and versatility, is firstly used to discover more meaningful information. Then the price, which is one of the most important elements of passenger transportation, is forecasted using six different forecasting model including linear regression, support vector regression, regression tree, gaussian process regression, genetic algorithm based artificial neural network, and ensemble model. The results of this study showed that proposed forecasting models can meet expectations in dynamic environmental conditions.
İnsanların hızlı, güvenilir ve konforlu olarak taşınması şehirlerde yaşanabilirlik düzeyini de arttırmaktadır. Ayrıca insanların yaşam kalitesine de etki etmektedir. Bu nedenle ulaşım hizmetlerinin iyileştirilmesi için çalışmaların yapılması gerekmektedir. Ulaşım hizmetlerini analiz etmek için çeşitli modeller geliştirilmiştir ancak her birinin kendine özgü avantajları ve dezavantajları vardır. Günümüzde işletmeler hizmet kalitesini artırmak için yüklü miktarda veri toplamaktadır. Artan rekabet ortamında ayakta durabilmek için topladıkları verileri, müşterilerine ve çalışanlarına değer yaratacak şekilde kullanmak zorundadırlar. Ulaşım hizmetlerini etkileyen birçok faktör vardır. Bu nedenle ulaşım hizmetlerindeki problemleri klasik yöntemlerle çözmek zordur. Çalışmamızın temel amacı otobüs bileti fiyatını doğru belirlemektir. Çalışmamızda ilk olarak basitliği ve çok yönlülüğü nedeniyle popüler olan k-ortalamalar algoritması, daha anlamlı bilgiler keşfetmek için kullanılır. Daha sonra yolcu taşımacılığının en önemli unsurlarından biri olan fiyat, doğrusal regresyon, destek vektör regresyonu, regresyon ağacı, gauss süreç regresyonu, genetik algoritma tabanlı yapay sinir ağı ve topluluk modeli kullanarak tahmin edilmiştir. Bu çalışmanın sonuçları tasarlanan tahmin modellerinin dinamik çevre koşullarındaki beklentileri karşılayabildiğini göstermiştir.